Skip to main content

Biochemical Assessment of Placental Function

  • Chapter
  • First Online:
Fetal Growth Restriction

Abstract

The placenta is a key organ in pregnancy because during this period it supports normal fetal growth and development. The placenta is responsible for nutrient and oxygen transport to the fetus and also secretes several hormones and growth factors important for fetal development. An alteration in placental functions or development could lead to pregnancy disorders (preeclampsia, FGR, miscarriage, and gestational diabetes, among others). It is known that the placenta alters the expression levels of several placental biomarkers, “opening a door” to the study of such concentrations as prognostic factors of the aforementioned pregnancy disorders. Until now, although different placental biomarkers have been associated with pregnancy syndromes, no biomarker has been effectively used in clinical practice to diagnose and predict such diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADAM12 :

A disintegrin and metalloprotease 12

AFP :

A-fetoprotein

AGEs :

Advanced glycation end products

eNOS :

Endothelial nitric oxide synthase

FGR :

Fetal growth restriction

GDM :

Gestational diabetes mellitus

GLUTs :

Glucose transporters

GRP78 :

Glucose-regulated protein 78

HbA :

Maternal hemoglobin

HbF :

Fetal hemoglobin

hCG :

Human chorionic gonadotropin

HIF-1 :

Hypoxia-inducible factor-1

Hsp70 :

Heat shock protein 70

IGF-1 :

Insulin-like growth factor-1

IGF-2 :

Insulin-like growth factor-2

IGFBPs :

Insulin-like binding proteins

IGFs :

Insulin-like growth factors

LDLs :

Low-density lipoproteins

LGA :

Large for gestational age

mtDNA :

Mitochondrial DNA

NO :

Nitric oxide

NPY :

Neuropeptide Y

NTDs :

Neural tube defects

PAPP-A :

Pregnancy-associated plasma protein A

pGF :

Placental growth factor

pGH :

Placental growth hormone

pL :

Placental lactogen

pO 2 :

Partial pressure of oxygen

PP13 :

Placental protein 13

PSG1 :

Glycosylated pregnancy-specific glycoprotein 1

PTH-rP :

Parathyroid hormone-related protein

RAAS :

Renin-angiotensin-aldosterone system

RFM :

Reduced fetal movements

ROS :

Reactive oxygen species

sENG :

Soluble endoglin

sFLT1/sVEGFR-1 :

Soluble fms-like tyrosine kinase-1 or soluble VEGF receptor-1

SGA :

Small for gestational age

VEGF :

Vascular endothelial growth factor

β-hCG :

β-Human chorionic gonadotropin

References

  1. Gude NM, Roberts CT, Kalionis B, King RG. Growth and function of the normal human placenta. Thromb Res. 2004;114:397–407.

    Article  CAS  PubMed  Google Scholar 

  2. Hiden U, Glitzner E, Hartmann M, Desoye G. Insulin and the IGF system in the human placenta of normal and diabetic pregnancies. J Anat. 2009;215:60–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Murphy VE, Smith R, Giles WB, Clifton VL. Endocrine regulation of human fetal growth: the role of the mother, placenta, and fetus. Endocr Rev. 2006;27:141–69.

    Article  PubMed  Google Scholar 

  4. Martín-Estal I, de la Garza RG, Castilla-Cortázar I. Intrauterine growth retardation (IUGR) as a novel condition of insulin-like growth factor-1 (IGF-1) deficiency. Rev Physiol Biochem Pharmacol. 2016;170:1–35.

    Google Scholar 

  5. Illsley NP. Placental metabolism. In: Kay HH, Nelson DM, Wang Y, editors. Placenta. 1st ed. Oxford: Wiley-Blackwell; 2011. p. 50–6.

    Chapter  Google Scholar 

  6. Fowden AL, Sferruzzi-Perri AN, Coan PM, Constancia M, Burton GJ. Placental efficiency and adaptation: endocrine regulation. J Physiol. 2009;587:3459–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vaughan OR, Sferruzzi-Perri AN, Coan PM, Fowden AL. Environmental regulation of placental phenotype: implications for fetal growth. Reprod Fertil Dev. 2011;24:80–96.

    Article  CAS  PubMed  Google Scholar 

  8. Sferruzzi-Perri AN, Vaughan OR, Forhead AJ, Fowden AL. Hormonal and nutritional drivers of intrauterine growth. Curr Opin Clin Nutr Metab Care. 2013;16:298–309.

    Article  CAS  PubMed  Google Scholar 

  9. Higgins JS, Vaughan OR, Fernandez de Liger E, Fowden AL, Sferruzzi-Perri AN. Placental phenotype and resource allocation to fetal growth are modified by the timing and degree of hypoxia during mouse pregnancy. J Physiol. 2016;594:1341–56.

    Article  CAS  PubMed  Google Scholar 

  10. Belkacemi L, Nelson DM, Desai M, Ross MG. Maternal undernutrition and fetal programming: role of the placenta. In:Placenta. Oxford: Wiley-Blackwell; 2011. p. 1–9.

    Google Scholar 

  11. Glazier JD, Jansson T. Placental transport in early pregnancy – a workshop report. Placenta. 2004;25(Suppl A):S57–9.

    Article  PubMed  Google Scholar 

  12. Burton GJ, Watson AL, Hempstock J, Skepper JN, Jauniaux E. Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J Clin Endocrinol Metab. 2002;87:2954–9.

    Article  CAS  PubMed  Google Scholar 

  13. Glazier JD, Harrington B, Sibley CP, Turner M. Placental function in maternofetal exchange. In: Rodeck CH, Whittle M, editors. Fetal medicine: basic science and clinical practice. London: Churchill Livingstone; 1999. p. 111–26.

    Google Scholar 

  14. Burton GJ, Fowden AL. The placenta: a multifaceted, transient organ. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370:20140066.

    Article  Google Scholar 

  15. Carter AM. Placental oxygen consumption. Part I: in vivo studies – a review. Placenta. 2000;21(Suppl A):S31–7.

    Article  PubMed  Google Scholar 

  16. Schneider H. Placental oxygen consumption. Part II: in vitro studies – a review. Placenta. 2000;21(Suppl A):S38–44.

    Article  PubMed  Google Scholar 

  17. McMillen IC, Robinson JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev. 2005;85:571–633.

    Article  CAS  PubMed  Google Scholar 

  18. Myatt L. Placental adaptive responses and fetal programming. J Physiol. 2006;572:25–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Giussani DA, Davidge ST. Developmental programming of cardiovascular disease by prenatal hypoxia. J Dev Orig Health Dis. 2013;4:328–37.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang S, Regnault TR, Barker PL, Botting KJ, McMillen IC, McMillan CM, et al. Placental adaptations in growth restriction. Nutrients. 2015;7:360–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hutter D, Kingdom J, Jaeggi E. Causes and mechanisms of intrauterine hypoxia and its impact on the fetal cardiovascular system: a review. Int J Pediatr. 2010;2010:401323.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zamudio S. The placenta at high altitude. High Alt Med Biol. 2003;4:171–91.

    Article  PubMed  Google Scholar 

  23. Tissot van Patot M, Grilli A, Chapman P, Broad E, Tyson W, Heller DS, et al. Remodelling of uteroplacental arteries is decreased in high altitude placentae. Placenta. 2003;24:326–35.

    Article  CAS  PubMed  Google Scholar 

  24. Ali KZ, Burton GJ, Morad N, Ali ME. Does hypercapillarization influence the branching pattern of terminal villi in the human placenta at high altitude? Placenta. 1996;17:677–82.

    Article  CAS  PubMed  Google Scholar 

  25. Krebs C, Macara LM, Leiser R, Bowman AW, Greer IA, Kingdom JC. Intrauterine growth restriction with absent end-diastolic flow velocity in the umbilical artery is associated with maldevelopment of the placental terminal villous tree. Am J Obstet Gynecol. 1996;175:1534–42.

    Article  CAS  PubMed  Google Scholar 

  26. Mayhew TM. Thinning of the intervascular tissue layers of the human placenta is an adaptive response to passive diffusion in vivo and may help to predict the origins of fetal hypoxia. Eur J Obstet Gynecol Reprod Biol. 1998;81:101–9.

    Article  CAS  PubMed  Google Scholar 

  27. Tissot van Patot MC, Murray AJ, Beckey V, Cindrova-Davies T, Johns J, Zwerdlinger L, et al. Human placental metabolic adaptation to chronic hypoxia, high altitude: hypoxic preconditioning. Am J Physiol Regul Integr Comp Physiol. 2010;298:R166–R72.

    Article  PubMed  CAS  Google Scholar 

  28. Parraguez VH, Atlagich M, Díaz R, Cepeda R, González C, De los Reyes M, et al. Ovine placenta at high altitudes: comparison of animals with different times of adaptation to hypoxic environment. Anim Reprod Sci. 2006;95:151–7.

    Article  PubMed  Google Scholar 

  29. Jansson N, Pettersson J, Haafiz A, Ericsson A, Palmberg I, Tranberg M, et al. Down-regulation of placental transport of amino acids precedes the development of intrauterine growth restriction in rats fed a low protein diet. J Physiol. 2006;576:935–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jones HN, Woollett LA, Barbour N, Prasad PD, Powell TL, Jansson T. High-fat diet before and during pregnancy causes marked up-regulation of placental nutrient transport and fetal overgrowth in C57/BL6 mice. FASEB J. 2009;23:271–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Coan PM, Vaughan OR, Sekita Y, Finn SL, Burton GJ, Constancia M, et al. Adaptations in placental phenotype support fetal growth during undernutrition of pregnant mice. J Physiol. 2010;588:527–38.

    Article  CAS  PubMed  Google Scholar 

  32. Rosario FJ, Jansson N, Kanai Y, Prasad PD, Powell TL, Jansson T. Maternal protein restriction in the rat inhibits placental insulin, mTOR, and STAT3 signaling and down-regulates placental amino acid transporters. Endocrinology. 2011;152:1119–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sferruzzi-Perri AN, Vaughan OR, Coan PM, Suciu MC, Darbyshire R, Constancia M, et al. Placental-specific Igf2 deficiency alters developmental adaptations to undernutrition in mice. Endocrinology. 2011;152:3202–12.

    Article  CAS  PubMed  Google Scholar 

  34. Sferruzzi-Perri AN, Vaughan OR, Haro M, Cooper WN, Musial B, Charalambous M, et al. An obesogenic diet during mouse pregnancy modifies maternal nutrient partitioning and the fetal growth trajectory. FASEB J. 2013;27:3928–37.

    Article  CAS  PubMed  Google Scholar 

  35. Bacon BJ, Gilbert RD, Kaufmann P, Smith AD, Trevino FT, Longo LD. Placental anatomy and diffusing capacity in guinea pigs following long-term maternal hypoxia. Placenta. 1984;5:475–87.

    Article  CAS  PubMed  Google Scholar 

  36. Gheorghe CP, Mohan S, Oberg KC, Longo LD. Gene expression patterns in the hypoxic murine placenta: a role in epigenesis? Reprod Sci. 2007;14:223–33.

    Article  CAS  PubMed  Google Scholar 

  37. Hvizdošová-Kleščová A, Uhlík J, Malina M, Vulterinová H, Novotný T, Vajner L. Remodeling of fetoplacental arteries in rats due to chronic hypoxia. Exp Toxicol Pathol. 2013;65:97–103.

    Article  PubMed  CAS  Google Scholar 

  38. Zhou J, Xiao D, Hu Y, Wang Z, Paradis A, Mata-Greenwood E, et al. Gestational hypoxia induces preeclampsia-like symptoms via heightened endothelin-1 signaling in pregnant rats. Hypertension. 2013;62:599–607.

    Article  CAS  PubMed  Google Scholar 

  39. Cuffe JS, Walton SL, Singh RR, Spiers JG, Bielefeldt-Ohmann H, Wilkinson L, et al. Mid- to late term hypoxia in the mouse alters placental morphology, glucocorticoid regulatory pathways and nutrient transporters in a sex-specific manner. J Physiol. 2014;592:3127–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jacobs R, Robinson JS, Owens JA, Falconer J, Webster ME. The effect of prolonged hypobaric hypoxia on growth of fetal sheep. J Dev Physiol. 1988;10:97–112.

    CAS  PubMed  Google Scholar 

  41. Penninga L, Longo LD. Ovine placentome morphology: effect of high altitude, long-term hypoxia. Placenta. 1998;19:187–93.

    Article  CAS  PubMed  Google Scholar 

  42. Parraguez VC, Atlagich M, Díaz R, Bruzzone ME, Behn C, Raggi LA. Effect of hypobaric hypoxia on lamb intrauterine growth: comparison between high- and low-altitude native ewes. Reprod Fertil Dev. 2005;17:497–505.

    Article  PubMed  Google Scholar 

  43. Baumann MU, Deborde S, Illsley NP. Placental glucose transfer and fetal growth. Endocrine. 2002;19:13–22.

    Article  CAS  PubMed  Google Scholar 

  44. Illsley NP, Hall S, Penfold P, Stacey TE. Diffusional permeability of the human placenta. Contrib Gynecol Obstet. 1985;13:92–7.

    CAS  PubMed  Google Scholar 

  45. Jansson T, Powell TL, Illsley NP. Non-electrolyte solute permeabilities of human placental microvillous and basal membranes. J Physiol. 1993;468:261–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Illsley NP. Glucose transporters in the human placenta. Placenta. 2000;21:14–22.

    Article  CAS  PubMed  Google Scholar 

  47. Xing AY, Challier JC, Lepercq J, Caüzac M, Charron MJ, Girard J, et al. Unexpected expression of glucose transporter 4 in villous stromal cells of human placenta. J Clin Endocrinol Metab. 1998;83:4097–101.

    CAS  PubMed  Google Scholar 

  48. Illsley N, Hall S, Stacey T. The modulation of glucose transfer across the human placenta by intervillous flow rates: an in vitro perfusion study. Troph Res. 1987;2:535–44.

    Google Scholar 

  49. Johnson LW, Smith CH. Monosaccharide transport across microvillous membrane of human placenta. Am J Phys. 1980;238:C160–8.

    Article  CAS  Google Scholar 

  50. Semenza GL. Expression of hypoxia-inducible factor 1: mechanisms and consequences. Biochem Pharmacol. 2000;59:47–53.

    Article  CAS  PubMed  Google Scholar 

  51. Hay WW. Regulation of placental metabolism by glucose supply. Reprod Fertil Dev. 1995;7:365–75.

    Article  CAS  PubMed  Google Scholar 

  52. Piquard F, Schaefer A, Dellenbach P, Haberey P. Lactate movements in the term human placenta in situ. Biol Neonate. 1990;58:61–8.

    Article  CAS  PubMed  Google Scholar 

  53. Yudilevich DL, Sweiry JH. Transport of amino acids in the placenta. Biochim Biophys Acta. 1985;822:169–201.

    Article  CAS  PubMed  Google Scholar 

  54. Cetin I, de Santis MS, Taricco E, Radaelli T, Teng C, Ronzoni S, et al. Maternal and fetal amino acid concentrations in normal pregnancies and in pregnancies with gestational diabetes mellitus. Am J Obstet Gynecol. 2005;192:610–7.

    Article  CAS  PubMed  Google Scholar 

  55. Philipps AF, Holzman IR, Teng C, Battaglia FC. Tissue concentrations of free amino acids in term human placentas. Am J Obstet Gynecol. 1978;131:881–7.

    Article  CAS  PubMed  Google Scholar 

  56. Cetin I, Fennessey PV, Sparks JW, Meschia G, Battaglia FC. Fetal serine fluxes across fetal liver, hindlimb, and placenta in late gestation. Am J Phys. 1992;263:E786–93.

    CAS  Google Scholar 

  57. Lewis RM, Glazier J, Greenwood SL, Bennett EJ, Godfrey KM, Jackson AA, et al. L-serine uptake by human placental microvillous membrane vesicles. Placenta. 2007;28:445–52.

    Article  CAS  PubMed  Google Scholar 

  58. Cleal JK, Lewis RM. The mechanisms and regulation of placental amino acid transport to the human foetus. J Neuroendocrinol. 2008;20:419–26.

    Article  CAS  PubMed  Google Scholar 

  59. Cetin I. Amino acid interconversions in the fetal-placental unit: the animal model and human studies in vivo. Pediatr Res. 2001;49:148–54.

    Article  CAS  PubMed  Google Scholar 

  60. Cariappa R, Heath-Monnig E, Smith CH. Isoforms of amino acid transporters in placental syncytiotrophoblast: plasma membrane localization and potential role in maternal/fetal transport. Placenta. 2003;24:713–26.

    Article  CAS  PubMed  Google Scholar 

  61. Battaglia FC, Regnault TR. Placental transport and metabolism of amino acids. Placenta. 2001;22:145–61.

    Article  CAS  PubMed  Google Scholar 

  62. Jansson T. Amino acid transporters in the human placenta. Pediatr Res. 2001;49:141–7.

    Article  CAS  PubMed  Google Scholar 

  63. Kudo Y, Boyd CA. Human placental amino acid transporter genes: expression and function. Reproduction. 2002;124:593–600.

    Article  CAS  PubMed  Google Scholar 

  64. Regnault TRH, de Vrijer B, Battaglia FC. Transport and metabolism of amino acids in placenta. Endocrine. 2002;19:23–41.

    Article  CAS  PubMed  Google Scholar 

  65. Chillarón J, Roca R, Valencia A, Zorzano A, Palacín M. Heteromeric amino acid transporters: biochemistry, genetics, and physiology. Am J Physiol Renal Physiol. 2001;281:F995–F1018.

    Article  PubMed  Google Scholar 

  66. Wagner CA, Lang F, Bröer S. Function and structure of heterodimeric amino acid transporters. Am J Physiol Cell Physiol. 2001;281:C1077–93.

    Article  CAS  PubMed  Google Scholar 

  67. Palacín M, Estévez R, Bertran J, Zorzano A. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev. 1998;78:969–1054.

    Article  PubMed  Google Scholar 

  68. Haggarty P. Placental regulation of fatty acid delivery and its effect on fetal growth – a review. Placenta. 2002;23(Suppl A):S28–38.

    Article  PubMed  Google Scholar 

  69. Dutta-Roy AK. Transport mechanisms for long-chain polyunsaturated fatty acids in the human placenta. Am J Clin Nutr. 2000;71:315S–22S.

    Article  CAS  PubMed  Google Scholar 

  70. Coleman RA, Haynes EB. Synthesis and release of fatty acids by human trophoblast cells in culture. J Lipid Res. 1987;28:1335–41.

    CAS  PubMed  Google Scholar 

  71. Stulc J. Placental transfer of inorganic ions and water. Physiol Rev. 1997;77:805–36.

    Article  CAS  PubMed  Google Scholar 

  72. Sibley CP, Glazier JD, Greenwood SL, Lacey H, Mynett K, Speake P, et al. Regulation of placental transfer: the Na(+)/H(+) exchanger – a review. Placenta. 2002;23(Suppl A):S39–46.

    Article  PubMed  Google Scholar 

  73. Shennan DB, Boyd CA. Ion transport by the placenta: a review of membrane transport systems. Biochim Biophys Acta. 1987;906:437–57.

    Article  CAS  PubMed  Google Scholar 

  74. McNamara JM, Kay HH. Placental hormones: physiology, disease, and prenatal diagnosis. Placenta. Wiley-Blackwell: Oxford; 2011. p. 57–65.

    Google Scholar 

  75. Rabinovici J, Goldsmith PC, Librach CL, Jaffe RB. Localization and regulation of the activin-A dimer in human placental cells. J Clin Endocrinol Metab. 1992;75:571–6.

    CAS  PubMed  Google Scholar 

  76. Petraglia F. Inhibin, activin and follistatin in the human placenta – a new family of regulatory proteins. Placenta. 1997;18:3–8.

    Article  CAS  PubMed  Google Scholar 

  77. Florio P, Luisi S, Ciarmela P, Severi FM, Bocchi C, Petraglia F. Inhibins and activins in pregnancy. Mol Cell Endocrinol. 2004;180:93–100.

    Article  CAS  Google Scholar 

  78. Grammatopoulos DK. Placental corticotrophin-releasing hormone and its receptors in human pregnancy and labour: still a scientific enigma. J Neuroendocrinol. 2008;20:433–8.

    Article  CAS  Google Scholar 

  79. Karteris E, Grammatopoulos DK, Randeva HS, Hillhouse EW. The role of corticotropin-releasing hormone receptors in placenta and fetal membranes during human pregnancy. Mol Genet Metab. 2001;72:287–96.

    Article  CAS  PubMed  Google Scholar 

  80. Florio P, Severi FM, Ciarmela P, Fiore G, Calonaci G, Merola A, et al. Placental stress factors and maternal-fetal adaptive response: the corticotropin-releasing factor family. Endocrine. 2002;19:91–102.

    Article  CAS  PubMed  Google Scholar 

  81. Muyan M, Boime I. Secretion of chorionic gonadotropin from human trophoblasts. Placenta. 1997;18:237–41.

    Article  CAS  PubMed  Google Scholar 

  82. Kurtzman JT, Wilson H, Rao CV. A proposed role for hCG in clinical obstetrics. Semin Reprod Med. 2001;19:63–8.

    Article  CAS  PubMed  Google Scholar 

  83. Lacroix MC, Guibourdenche J, Frendo JL, Muller F, Evain-Brion D. Human placental growth hormone – a review. Placenta. 2002;23(Suppl A):S87–94.

    Article  PubMed  Google Scholar 

  84. Freemark M. Regulation of maternal metabolism by pituitary and placental hormones: roles in fetal development and metabolic programming. Horm Res. 2006;65(Supp 6):41–9.

    CAS  PubMed  Google Scholar 

  85. Handwerger S, Freemark M. The roles of placental growth hormone and placental lactogen in the regulation of human fetal growth and development. J Pediatr Endocrinol Metab. 2000;13:343–56.

    Article  CAS  PubMed  Google Scholar 

  86. Riley SC, Leask R, Balfour C, Brennand JE, Groome NP. Production of inhibin forms by the fetal membranes, decidua, placenta and fetus at parturition. Hum Reprod. 2000;15:578–83.

    Article  CAS  PubMed  Google Scholar 

  87. Reis FM, Florio P, Cobellis L, Luisi S, Severi FM, Bocchi C, et al. Human placenta as a source of neuroendocrine factors. Biol Neonate. 2001;79:150–6.

    Article  CAS  PubMed  Google Scholar 

  88. Ashworth CJ, Hoggard N, Thomas L, Mercer JG, Wallace JM, Lea RG. Placental leptin. Rev Reprod. 2000;5:18–24.

    Article  CAS  PubMed  Google Scholar 

  89. Petraglia F, Calza L, Giardino L, Sutton S, Marrama P, Rivier J, et al. Identification of immunoreactive neuropeptide-γ in human placenta: localization, secretion, and binding sites. Endocrinology. 1989;124:2016–22.

    Article  CAS  PubMed  Google Scholar 

  90. Kaludjerovic J, Ward WE. The interplay between estrogen and fetal adrenal cortex. J Nutr Metab. 2012;2012:837901.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Albrecht ED, Pepe GJ. Estrogen regulation of placental angiogenesis and fetal ovarian development during primate pregnancy. Int J Dev Biol. 2010;54:397–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kallen CB. Steroid hormone synthesis in pregnancy. Obstet Gynecol Clin N Am. 2004;31:795–816.

    Article  Google Scholar 

  93. Shanker YG, Rao AJ. Progesterone receptor expression in the human placenta. Mol Hum Reprod. 1999;5:481–6.

    Article  CAS  PubMed  Google Scholar 

  94. Iliodromiti Z, Antonakopoulos N, Sifakis S, Tsikouras P, Daniilidis A, Dafopoulos K, et al. Endocrine, paracrine, and autocrine placental mediators in labor. Hormones. 2012;11:397–409.

    Article  PubMed  Google Scholar 

  95. Grill S, Rusterholz C, Zanetti-Dällenbach R, Tercanli S, Holzgreve W, Hahn S, et al. Potential markers of preeclampsia – a review. Reprod Biol Endocrinol. 2009;7:70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Malassiné A, Cronier L. Hormones and human trophoblast differentiation: a review. Endocrine. 2002;19:3–11.

    Article  PubMed  Google Scholar 

  97. Corbacho AM, Martínez De La Escalera G, Clapp C. Roles of prolactin and related members of the prolactin/growth hormone/placental lactogen family in angiogenesis. J Endocrinol. 2002;173:219–38.

    Article  CAS  PubMed  Google Scholar 

  98. Gude NM, King RG, Brennecke SP. Autacoid interactions in the regulation of blood flow in the human placenta. Clin Exp Pharmacol Physiol. 1998;25:706–11.

    Article  CAS  PubMed  Google Scholar 

  99. Fialova L, Malbohan IM. Pregnancy-associated plasma protein A (PAPP-A): theoretical and clinical aspects. Bratisl Lek Listy. 2002;103:194–205.

    CAS  PubMed  Google Scholar 

  100. Lawrence JB, Oxvig C, Overgaard MT, Sottrup-Jensen L, Gleich GJ, Hays LG, et al. The insulin-like growth factor (IGF)-dependent IGF binding protein-4 protease secreted by human fibroblasts is pregnancy-associated plasma protein-A. Proc Natl Acad Sci U S A. 1999;96:3149–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sun IYC, Overgaard MT, Oxvig C, Giudice LC. Pregnancy-associated plasma protein A proteolytic activity is associated with the human placental trophoblast cell membrane. J Clin Endocrinol Metab. 2002;87:5235–40.

    Article  CAS  PubMed  Google Scholar 

  102. Fowden AL, Forhead AJ. Endocrine mechanisms of intrauterine programming. Reproduction. 2004;127:515–26.

    Article  CAS  PubMed  Google Scholar 

  103. Fowden AL. The insulin-like growth factors and feto-placental growth. Placenta. 2003;24:803–12.

    Article  CAS  PubMed  Google Scholar 

  104. Fowden AL, Li J, Forhead AJ. Glucocorticoids and the preparation for life after birth: are there long-term consequences of the life insurance? Proc Nutr Soc. 1998;57:113–22.

    Article  CAS  PubMed  Google Scholar 

  105. Gagnon A, Wilson RD, Audibert F, Allen VM, Blight C, Brock JA, et al. Obstetrical complications associated with abnormal maternal serum markers analytes. J Obstet Gynaecol Can. 2008;30:918–49.

    Article  PubMed  Google Scholar 

  106. Marin JJ, Macias RI, Serrano MA. The hepatobiliary-like excretory function of the placenta. A review. Placenta. 2003;24:431–8.

    Article  CAS  PubMed  Google Scholar 

  107. Pasanen M. The expression and regulation of drug metabolism in human placenta. Adv Drug Deliv Rev. 1999;38:81–97.

    Article  CAS  PubMed  Google Scholar 

  108. Moffett A, Loke YW. The immunological paradox of pregnancy: a reappraisal. Placenta. 2004;25:1–8.

    Article  CAS  PubMed  Google Scholar 

  109. Arechavaleta-Velasco F, Koi H, Strauss JF 3rd, Parry S. Viral infection of the trophoblast: time to take a serious look at its role in abnormal implantation and placentation? J Reprod Immunol. 2002;55:113–21.

    Article  PubMed  Google Scholar 

  110. Reynolds LP, Redmer DA. Utero-placental vascular development and placental function. J Anim Sci. 1995;73:1839–51.

    Article  CAS  PubMed  Google Scholar 

  111. Reynolds LP, Borowicz PP, Vonnahme KA, Johnson ML, Grazul-Bilska AT, Redmer DA, et al. Placental angiogenesis in sheep models of compromised pregnancy. J Physiol. 2005;565:43–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Reynolds LP, Borowicz PP, Vonnahme KA, Johnson ML, Grazul-Bilska AT, Wallace JM, et al. Animal models of placental angiogenesis. Placenta. 2005;26:689–708.

    Article  CAS  PubMed  Google Scholar 

  113. Reynolds LP, Caton JS, Redmer DA, Grazul-Bilska AT, Vonnahme KA, Borowicz PP, et al. Evidence for altered placental blood flow and vascularity in compromised pregnancies. J Physiol. 2006;572:51–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Konje JC, Howarth ES, Kaufmann P, Taylor DJ. Longitudinal quantification of uterine artery blood volume flow changes during gestation in pregnancies complicated by intrauterine growth restriction. BJOG. 2003;110:301–5.

    Article  PubMed  Google Scholar 

  115. Molina RD, Meschia G, Battaglia FC, Hay WW. Gestational maturation of placental glucose transfer capacity in sheep. Am J Phys. 1991;261:R697–704.

    CAS  Google Scholar 

  116. Thureen PJ, Trembler KA, Meschia G, Makowski EL, Wilkening RB. Placental glucose transport in heat-induced fetal growth retardation. Am J Phys. 1992;263:R578–85.

    CAS  Google Scholar 

  117. Wallace JM, Bourke DA, Aitken RP, Leitch N, Hay WW. Blood flows and nutrient uptakes in growth-restricted pregnancies induced by overnourishing adolescent sheep. Am J Physiol Regul Integr Comp Physiol. 2002;282:R1027–36.

    Article  CAS  PubMed  Google Scholar 

  118. Wallace JM, Regnault TR, Limesand SW, Hay WW, Anthony RV. Investigating the causes of low birth weight in contrasting ovine paradigms. J Physiol. 2005;565:19–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Charnock-Jones DS, Kaufmann P, Mayhew TM. Aspects of human fetoplacental vasculogenesis and angiogenesis. I. Molecular regulation. Placenta. 2004;25:103–13.

    Article  CAS  PubMed  Google Scholar 

  120. Kaufmann P, Mayhew TM, Charnock-Jones DS. Aspects of human fetoplacental vasculogenesis and angiogenesis. II. Changes during normal pregnancy. Placenta. 2004;25:114–26.

    Article  CAS  PubMed  Google Scholar 

  121. Mayhew TM, Charnock-Jones DS, Kaufmann P. Aspects of human fetoplacental vasculogenesis and angiogenesis. III. Changes in complicated pregnancies. Placenta. 2004;25:127–39.

    Article  CAS  PubMed  Google Scholar 

  122. Huppertz B, Peeters LL. Vascular biology in implantation and placentation. Angiogenesis. 2005;8:157–67.

    Article  PubMed  Google Scholar 

  123. Reynolds LP, Redmer DA. Angiogenesis in the placenta. Biol Reprod. 2001;64:1033–40.

    Article  CAS  PubMed  Google Scholar 

  124. Redmer DA, Aitken RP, Milne JS, Reynolds LP, Wallace JM. Influence of maternal nutrition on messenger RNA expression of placental angiogenic factors and their receptors at midgestation in adolescent sheep. Biol Reprod. 2005;72:1004–9.

    Article  CAS  PubMed  Google Scholar 

  125. Magness RR, Sullivan JA, Li Y, Phernetton TM, Bird IM. Endothelial vasodilator production by uterine and systemic arteries. VI. Ovarian and pregnancy effects on eNOS and NO(x). Am J Physiol Heart Circ Physiol. 2001;280:H1692–8.

    Article  CAS  PubMed  Google Scholar 

  126. Itoh H, Bird IM, Nakao K, Magness RR. Pregnancy increases soluble and particulate guanylate cyclases and decreases the clearance receptor of natriuretic peptides in ovine uterine, but not systemic, arteries. Endocrinology. 1998;139:3329–41.

    Article  CAS  PubMed  Google Scholar 

  127. Vagnoni KE, Shaw CE, Phernetton TM, Meglin BM, Bird IM, Magness RR. Endothelial vasodilator production by uterine and systemic arteries. III. Ovarian and estrogen effects on NO synthase. Am J Phys. 1998;275:H1845–56.

    CAS  Google Scholar 

  128. Zheng J, Li Y, Weiss AR, Bird IM, Magness RR. Expression of endothelial and inducible nitric oxide synthases and nitric oxide production in ovine placental and uterine tissues during late pregnancy. Placenta. 2000;21:516–24.

    Article  CAS  PubMed  Google Scholar 

  129. Joyce JM, Phernetton TM, Shaw CE, Modrick ML, Magness RR. Endothelial vasodilator production by uterine and systemic arteries. IX. eNOS gradients in cycling and pregnant ewes. Am J Physiol Heart Circ Physiol. 2002;282:H342–8.

    Article  CAS  PubMed  Google Scholar 

  130. Vonnahme KA, Wilson ME, Li Y, Rupnow HL, Phernetton TM, Ford SP, et al. Circulating levels of nitric oxide and vascular endothelial growth factor throughout ovine pregnancy. J Physiol. 2005;565:101–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bird IM, Zhang L, Magness RR. Possible mechanisms underlying pregnancy-induced changes in uterine artery endothelial function. Am J Physiol Regul Integr Comp Physiol. 2003;284:R245–58.

    Article  CAS  PubMed  Google Scholar 

  132. Maul H, Longo M, Saade GR, Garfield RE. Nitric oxide and its role during pregnancy: from ovulation to delivery. Curr Pharm Des. 2003;9:359–80.

    Article  CAS  PubMed  Google Scholar 

  133. Wu G, Bazer FW, Cudd TA, Meininger CJ, Spencer TE. Maternal nutrition and fetal development. J Nutr. 2004;134:2169–72.

    Article  CAS  PubMed  Google Scholar 

  134. Williams D. Pregnancy: a stress test for life. Curr Opin Obstet Gynecol. 2003;15:465–71.

    Article  PubMed  Google Scholar 

  135. Torgersen KL, Curran CA. A systematic approach to the physiologic adaptations of pregnancy. Crit Care Nurs Q. 2006;29:2–19.

    Article  PubMed  Google Scholar 

  136. Weissgerber TL, Wolfe LA. Physiological adaptation in early human pregnancy: adaptation to balance maternal-fetal demands. Appl Physiol Nutr Metab. 2006;31:1–11.

    Article  CAS  PubMed  Google Scholar 

  137. Norwitz ER. Defective implantation and placentation: laying the blueprint for pregnancy complications. Reprod Biomed Online. 2006;13:591–9.

    Article  CAS  PubMed  Google Scholar 

  138. Joshi D, James A, Quaglia A, Westbrook RH, Heneghan MA. Liver disease in pregnancy. Lancet. 2010;375:594–605.

    Article  PubMed  Google Scholar 

  139. Steegers EAP, von Dadelszen P, Duvekot JJ, Pijnenborg R. Pre-eclampsia. Lancet. 2010;376:631–44.

    Article  PubMed  Google Scholar 

  140. Acharya A, Santos J, Linde B, Anis K. Acute kidney injury in pregnancy-current status. Adv Chronic Kidney Dis. 2013;20:215–22.

    Article  PubMed  Google Scholar 

  141. Villar J, Carroli G, Wojdyla D, Abalos E, Giordano D, Ba’aqeel H, et al. Preeclampsia, gestational hypertension and intrauterine growth restriction, related or independent conditions? Am J Obstet Gynecol. 2006;194:921–31.

    Article  PubMed  Google Scholar 

  142. Ben-Haroush A, Yogev Y, Hod M. Epidemiology of gestational diabetes mellitus and its association with Type 2 diabetes. Diabet Med. 2004;21:103–13.

    Article  CAS  PubMed  Google Scholar 

  143. Cuffe JS, Holland O, Salomon C, Rice GE, Perkins AV. Placental derived biomarkers of pregnancy disorders. Placenta. 2017;54:104–10.

    Article  CAS  PubMed  Google Scholar 

  144. Sattar N, Greer IA. Pregnancy complications and maternal cardiovascular risk: opportunities for intervention and screening? BMJ. 2002;325:157–60.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Irani RA, Xia Y. Renin angiotensin signaling in normal pregnancy and preeclampsia. Semin Nephrol. 2011;31:47–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ha CT, Wu JA, Irmak S, Lisboa FA, Dizon AM, Warren JW, et al. Human pregnancy specific beta-1-glycoprotein 1 (PSG1) has a potential role in placental vascular morphogenesis. Biol Reprod. 2010;83:27–35.

    Article  CAS  PubMed  Google Scholar 

  147. Henson MC, Castracane VD. Leptin in pregnancy: an update. Biol Reprod. 2006;74:218–29.

    Article  CAS  PubMed  Google Scholar 

  148. Patil M, Panchanadikar TM, Wagh G. Variation of PAPP-A level in the first trimester of pregnancy and its clinical outcome. J Obstet Gynaecol India. 2014;64:116–9.

    Article  PubMed  Google Scholar 

  149. Cowans NJ, Spencer K. First-trimester ADAM12 and PAPP-A as markers for intrauterine fetal growth restriction through their roles in the insulin-like growth factor system. Prenat Diagn. 2007;27:264–71.

    Article  CAS  PubMed  Google Scholar 

  150. Kasimis C, Evangelinakis N, Rotas M, Georgitsi M, Pelekanos N, Kassanos D. Predictive value of biochemical marker ADAM-12 at first trimester of pregnancy for hypertension and intrauterine growth restriction. Clin Exp Obstet Gynecol. 2016;43:43–7.

    CAS  PubMed  Google Scholar 

  151. Muttukrishna S. Role of inhibin in normal and high-risk pregnancy. Semin Reprod Med. 2004;22:227–34.

    Article  CAS  PubMed  Google Scholar 

  152. Barut F, Barut A, Gun BD, Kandemir NO, Harma MI, Harma M, et al. Intrauterine growth restriction and placental angiogenesis. Diagn Pathol. 2010;5:24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Tandon V, Hiwale S, Amle D, Nagaria T, Patra PK. Assessment of serum vascular endothelial growth factor levels in pregnancy-induced hypertension patients. J Pregnancy. 2017;2017:3179670.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Bredaki FE, Mataliotakis M, Wright A, Wright D, Nicolaides KH. Maternal serum alpha-fetoprotein at 12, 22 and 32 weeks’ gestation in screening for pre-eclampsia. Ultrasound Obstet Gynecol. 2016;47:466–71.

    Article  CAS  PubMed  Google Scholar 

  155. Audibert F, Benchimol Y, Benattar C, Champagne C, Frydman R. Prediction of preeclampsia or intrauterine growth restriction by second trimester serum screening and uterine Doppler velocimetry. Fetal Diagn Ther. 2005;20:48–53.

    Article  PubMed  Google Scholar 

  156. Rondo PH, Tomkins AM. Folate and intrauterine growth retardation. Ann Trop Paediatr. 2000;20:253–8.

    Article  CAS  PubMed  Google Scholar 

  157. Pandey K, Dubay P, Bhagoliwal A, Gupta N, Tyagi G. Hyperhomocysteinemia as a risk factor for IUGR. J Obstet Gynaecol India. 2012;62:406–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Florio P, Luisi S, Ciarmela P, Severi FM, Bocchi C, Petraglia F. Inhibins and activins in pregnancy. Mol Cell Endocrinol. 2004;225:93–100.

    Article  CAS  PubMed  Google Scholar 

  159. Ingec M, Gursoy HG, Yildiz L, Kumtepe Y, Kadanali S. Serum levels of insulin, IGF-1, and IGFBP-1 in pre-eclampsia and eclampsia. Int J Gynaecol Obstet. 2004;84:214–9.

    Article  CAS  PubMed  Google Scholar 

  160. Laway BA. Pregnancy in acromegaly. Ther Adv Endocrinol Metab. 2015;6:267–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Cooley SM, Donnelly JC, Geary MP, Rodeck CH, Hindmarsh PC. Maternal insulin-like growth factors 1 and 2 (IGF-1, IGF-2) and IGF BP-3 and the hypertensive disorders of pregnancy. J Matern Fetal Neonatal Med. 2010;23:658–61.

    Article  CAS  PubMed  Google Scholar 

  162. Collins S, Arulkumaran S, Hayes K, Jackson S, Impey L. Oxford handbook of obstetrics and gynaecology. Oxford: Oxford University Press; 2013.

    Book  Google Scholar 

  163. Goldenberg RL, Cliver SP. Small for gestational age and intrauterine growth restriction: definitions and standards. Clin Obstet Gynecol. 1997;40:704–14.

    Article  CAS  PubMed  Google Scholar 

  164. Kramer MS, Olivier M, McLean FH, Willis DM, Usher RH. Impact of intrauterine growth retardation and body proportionality on fetal and neonatal outcome. Pediatrics. 1990;86:707–13.

    CAS  PubMed  Google Scholar 

  165. Maulik D. Management of fetal growth restriction: an evidence-based approach. Clin Obstet Gynecol. 2006;49:320–34.

    Article  PubMed  Google Scholar 

  166. Bamfo JE, Odibo AO. Diagnosis and management of fetal growth restriction. J Pregnancy. 2011;2011:640715.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Hattersley AT, Tooke JE. The fetal insulin hypothesis: an alternative explanation of the association of low birthweight with diabetes and vascular disease. Lancet. 1999;353:1789–92.

    Article  CAS  PubMed  Google Scholar 

  168. Friedman SA, Taylor RN, Roberts JM. Pathophysiology of preeclampsia. Clin Perinatol. 1991;18:661–82.

    Article  CAS  PubMed  Google Scholar 

  169. Barron WM. The syndrome of preeclampsia. Gastroenterol Clin N Am. 1992;21:851–72.

    CAS  Google Scholar 

  170. Jeyabalan A. Epidemiology of preeclampsia: impact of obesity. Nutr Rev. 2013;71(Suppl 1):S18–25.

    Article  PubMed  Google Scholar 

  171. Roberts JM, Taylor RN, Musci TJ, Rodgers GM, Hubel CA, McLaughlin MK. Preeclampsia: an endothelial cell disorder. Am J Obstet Gynecol. 1989;161:1200–4.

    Article  CAS  PubMed  Google Scholar 

  172. Zhou Y, Damsky CH, Fisher SJ. Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome? J Clin Invest. 1997;99:2152–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Irwin JC, Suen LF, Martina NA, Mark SP, Giudice LC. Role of the IGF system in trophoblast invasion and pre-eclampsia. Hum Reprod. 1999;14(Suppl 2):90–6.

    Article  CAS  PubMed  Google Scholar 

  174. Chard T. Insulin-like growth factors and their binding proteins in normal and abnormal human fetal growth. Growth Regul. 1994;4:91–100.

    CAS  PubMed  Google Scholar 

  175. Halhali A, Tovar AR, Torres N, Bourges H, Garabedian M, Larrea F. Preeclampsia is associated with low circulating levels of insulin-like growth factor I and 1,25-dihydroxyvitamin D in maternal and umbilical cord compartments. J Clin Endocrinol Metab. 2000;85:1828–33.

    CAS  PubMed  Google Scholar 

  176. Reis FM, D’Antona D, Petraglia F. Predictive value of hormone measurements in maternal and fetal complications of pregnancy. Endocr Rev. 2002;23:230–57.

    Article  CAS  PubMed  Google Scholar 

  177. Cuckle H. Prenatal screening using maternal markers. J Clin Med. 2014;3:504–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Appendix F. Maternal serum marker screening. Understanding genetics: a district of Columbia guide for patients and health professionals. Washington, DC: Genetic Alliance; 2010.

    Google Scholar 

  179. Johnson J, Pastuck M, Metcalfe A, Connors G, Krause R, Wilson D, et al. First-trimester Down syndrome screening using additional serum markers with and without nuchal translucency and cell-free DNA. Prenat Diagn. 2013;33:1044–9.

    Article  CAS  PubMed  Google Scholar 

  180. Krantz D, Hallahan T, Janik D, Carmichael J. Maternal serum screening markers and adverse outcome: a new perspective. J Clin Med. 2014;3:693–712.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martín-Estal, I., Rodriguez-Zambrano, M.A., Castilla-Cortázar, I. (2019). Biochemical Assessment of Placental Function. In: Nardozza, L., Araujo Júnior, E., Rizzo, G., Deter, R. (eds) Fetal Growth Restriction. Springer, Cham. https://doi.org/10.1007/978-3-030-00051-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00051-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00050-9

  • Online ISBN: 978-3-030-00051-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics