Skip to main content

Decomposition of the Twisted Dirac Operator

  • Conference paper
  • First Online:
Clifford Analysis and Related Topics (CART 2014)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 260))

Included in the following conference series:

  • 331 Accesses

Abstract

The classical Dirac operator is a conformally invariant first order differential operator mapping spinor-valued functions to the same space, where the spinor space is to be interpreted as an irreducible representation of the spin group. In this article we twist the Dirac operator by replacing the spinor space with an arbitrary irreducible representation of the spin group. In this way, the operator becomes highly reducible, whence we determine its full decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Research Notes in Mathematics, vol. 76. Pitman, London (1982)

    Google Scholar 

  2. Bureš, J., Sommen, F., Souček, V., Van Lancker, P.: Rarita-Schwinger type operators in Clifford analysis. J. Funct. Anal. 185, 425–456 (2001)

    Article  MathSciNet  Google Scholar 

  3. Bureš, J., Sommen, F., Souček, V., Van Lancker, P.: Symmetric analogues of Rarita-Schwinger equations. Ann. Glob. Anal. Geom. 21(3), 215–240 (2001)

    Article  MathSciNet  Google Scholar 

  4. Constales, D., Sommen. F., Van Lancker, P.: Models for irreducible representations of Spin\((m)\). Adv. Appl. Clifford Algebras 11(S1), 271–289 (2001)

    Google Scholar 

  5. De Schepper, H., Eelbode, D., Raeymaekers, T.: On a special type of solutions for arbitrary higher spin Dirac Operators. J. Phys. A: Math. Theor. 43(32), 1–13 (2010)

    Article  MathSciNet  Google Scholar 

  6. De Schepper, H., Eelbode, D., Raeymaekers, T.: Twisted higher spin Dirac operators. Complex Anal. Oper. Theory 8, 429–447 (2014)

    Article  MathSciNet  Google Scholar 

  7. Delanghe, R., Sommen, F., Souček, V.: Clifford Analysis and Spinor Valued Functions. Kluwer Academic Publishers, Dordrecht (1992)

    MATH  Google Scholar 

  8. Dirac, P.A.M.: The quantum theory of the electron. Proc. R. Soc. Lond. 117 (1928)

    Google Scholar 

  9. Eelbode, D., Raeymaekers, T.: Construction of higher spin operators using transvector algebras. J. Math. Phys. 55(10), 101703 (2015)

    Article  MathSciNet  Google Scholar 

  10. Eelbode, D., Smid, D.: Factorization of Laplace operators on higher spin representations. Complex Anal. Oper. Theory 6, 1011–1023 (2012)

    Article  MathSciNet  Google Scholar 

  11. Fegan, H.D.: Conformally invariant first order differential operators. Q. J. Math. 27, 513–538 (1976)

    Article  MathSciNet  Google Scholar 

  12. Fulton, W., Harris, J.: Representation Theory: A First Course. Springer, New York (1991)

    MATH  Google Scholar 

  13. Gilbert, J., Murray, M.A.M.: Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  14. Howe, R., Tan, E., Willenbring, J.: Stable branching rules for classical symmetric pairs. Trans. AMS 357(4), 1601–1626 (2004)

    Article  MathSciNet  Google Scholar 

  15. Humphreys, J.: Introduction to Lie Algebra and Representation Theory. Springer, New York (1972)

    Book  Google Scholar 

  16. Klimyk, A.U.: Infinitesimal operators for representations of complex Lie groups and Clebsch-Gordan coefficients for compact groups. J. Phys. A: Math. Gen 15, 3009–3023 (1982)

    Article  MathSciNet  Google Scholar 

  17. Molev, A.I.: Yangians and Classical Lie Algebras. Mathematical surveys and monographs, vol. 143. AMS Bookstore (2007)

    Google Scholar 

  18. Stein, E.W., Weiss, G.: Generalization of the Cauchy-Riemann equations and representations of the rotation group. Amer. J. Math. 90, 163–196 (1968)

    Article  MathSciNet  Google Scholar 

  19. Tolstoy, V.N.: Extremal projections for reductive classical Lie superalgebras with a non-degenerate generalised Killing form. Russ. Math. Surv. 40, 241–242 (1985)

    Article  Google Scholar 

  20. Zhelobenko, D.P.: Transvector algebras in representation theory and dynamic symmetry, group theoretical methods in physics. In: Proceedings of the Third Yurmala Seminar, vol. 1 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Raeymaekers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raeymaekers, T. (2018). Decomposition of the Twisted Dirac Operator. In: Cerejeiras, P., Nolder, C., Ryan, J., Vanegas Espinoza, C. (eds) Clifford Analysis and Related Topics. CART 2014. Springer Proceedings in Mathematics & Statistics, vol 260. Springer, Cham. https://doi.org/10.1007/978-3-030-00049-3_6

Download citation

Publish with us

Policies and ethics