Skip to main content

Lambda-Harmonic Functions: An Expository Account

  • Conference paper
  • First Online:
Clifford Analysis and Related Topics (CART 2014)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 260))

Included in the following conference series:

  • 338 Accesses

Abstract

In this paper, we compile a variety of results on the \(\lambda -\)Laplacian operator, denoted by \(\varDelta _{\lambda }\), a generalization of the well-known Laplacian in \({\mathbb {R}^n}\). We have compiled a list of known properties for \(\varDelta _{\lambda }\) when \(\lambda = \frac{n-2}{2}\) and present analogous properties for \(\varDelta _{\lambda }\). We close by discussing the \(\lambda -\)Poisson kernel, the function that solves the Dirichlet problem on the closed ball in \({\mathbb {R}^n}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. Dover Books on Mathematics. Dover Publications (2012)

    Google Scholar 

  2. Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory, 2 edn. Springer (1992)

    Google Scholar 

  3. Bateman, H., Erdélyi, A.: Higher Transcendental Functions. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  4. Bromwich, T.J.I.: Investigations on series of zonal harmonics. In: Proceedings of the London Mathematical Society, vol. s2-4(1), pp. 204–222 (1907)

    Article  MathSciNet  Google Scholar 

  5. Bezubik, A., Dabrowska, A., Strasburger, A.: On spherical expansions of zonal functions on Euclidean spheres. Archiv der Mathematik 90(1), 70–81 (2008)

    Article  MathSciNet  Google Scholar 

  6. Cho, S., Choe, B.R., Koo, H.: Weak Hopf lemma for the invariant Laplacian and related elliptic operators. JMAA 408, 576–588 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Dai, F., Xu, Y.: Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer Monographs in Mathematics, Springer, New York (2013)

    Book  Google Scholar 

  8. Groemer, H.: Geometric Applications of Fourier Series and Spherical Harmonics, vol. 61. Cambridge University Press, New York (1996)

    Book  Google Scholar 

  9. Kwon, E.G.: One radius theorem for the eigenfunctions of the invariant Laplacian. PAMS 116(1), 27–34 (1992)

    Article  MathSciNet  Google Scholar 

  10. Liu, C., Peng, L.: Boundary regularity in the Dirichlet problem for the invariant Laplacians \(\Delta _{\gamma }\) on the unit real ball. PAMS 132(1), 3259–3268 (2004)

    Article  MathSciNet  Google Scholar 

  11. Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics, vol. 52, 3rd edn. Springer, New York (1966)

    Book  Google Scholar 

  12. Morais, J.: Approximation by homogeneous polynomial solutions of the Riesz system in \({\mathbb{R}^3}\). PhD thesis, Institute of Mathematics and Physics, Bauhaus University Weimar (2009)

    Google Scholar 

  13. Müller, C.: Spherical Harmonics. Lecture Notes in Mathematics, vol. 17. Springer-Verlag, Berlin (1966)

    Book  Google Scholar 

  14. Pan Y., Wang, M.: On the monotonicity of positive invariant harmonic functions in the unit ball. arXiv:math/0702064v1 [math.CA]

  15. Rudin, W.: Function Theory in the Unit Ball of \(\mathbb{C}^n\). Classics in Mathematics. Springer (2008)

    Google Scholar 

  16. Schach, S.R.: New identities for legendre associated functions of integral order and degree I. SIAM J. Math. Anal. 7(1), 59–69 (1976)

    Article  MathSciNet  Google Scholar 

  17. Stein, E.M., Weiss, G.L.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton, NJ (1971)

    MATH  Google Scholar 

  18. Stoll, M.: Harmonic Function Theory on Real Hyperbolic Space, Lecture Notes, Preliminary Draft, http://www.math.sc.edu/math/sites/math.sc.edu/files/attachments/hyperbolic.pdf?q=math/sites/sc.edu.math/files/attachments/hyperbolic.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ballenger-Fazzone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ballenger-Fazzone, K., Nolder, C.A. (2018). Lambda-Harmonic Functions: An Expository Account. In: Cerejeiras, P., Nolder, C., Ryan, J., Vanegas Espinoza, C. (eds) Clifford Analysis and Related Topics. CART 2014. Springer Proceedings in Mathematics & Statistics, vol 260. Springer, Cham. https://doi.org/10.1007/978-3-030-00049-3_1

Download citation

Publish with us

Policies and ethics