Skip to main content

Rough Neutrosophic Aggregation Operators for Multi-criteria Decision-Making

  • Chapter
  • First Online:
Fuzzy Multi-criteria Decision-Making Using Neutrosophic Sets

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 369))

Abstract

Rough neutrosophic set , a hybrid intelligent structure of rough set and neutrosophic set, is a powerful mathematical tool to deal with indeterminate, inconsistent and incomplete information, which has caught attention to the researchers. We present a brief review of decision making models in rough neutrosophic environment. In this chapter, we propose two aggregation operators, namely, a rough neutrosophic arithmetic mean operator (RNAMO) and a rough neutrosophic geometric mean operator (RNGMO). We establish some basic properties of the proposed operators. In the decision making situation, the rating of all alternatives is expressed with the upper and lower approximation operators and the pair of neutrosophic sets, which are characterized by truth-membership degree, indeterminacy-membership degree, and falsity membership degree. Weight of each criterion is completely unknown to the decision maker. We define a cosine function to obtain the unknown criteria weights in rough neutrosophic environment. We develop four new multi-criteria decision making methods based on the proposed operators. Finally, we solve a numerical example to illustrate the feasibility, applicability and efficiency of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yoon, K., Hwang, C. L.: Multiple Attribute Decision Making Methods and Applications. Springer, Berlin (1981). https://doi.org/10.1007/978-3-642-48318-9

    Book  Google Scholar 

  2. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982)

    Article  Google Scholar 

  3. Swiniarski, R.W., Skowron, A.: Rough set methods in feature selection and recognition. Pattern Recogn. Lett. 24(6), 833–849 (2003)

    Article  Google Scholar 

  4. Cyran, K.A., Mrzek, A.: Rough sets in hybrid methods for pattern recognition. Int. J Intell. Syst. 16(2), 149–168 (2001)

    Article  Google Scholar 

  5. Wojcik, Z.: Rough approximation of shapes in pattern recognition. Comput. Vis. Graph. Image Process. 40, 228–249 (1987)

    Article  Google Scholar 

  6. Tsumoto, S.: Mining diagnostic rules from clinical databases using rough sets and medical diagnostic model. Inf. Sci. 162(2), 65–80 (2004)

    Article  MathSciNet  Google Scholar 

  7. Wakulicz-Deja, A., Paszek, P.: Applying rough set theory multi stage medical diagnosing. Fundamenta Informaticae 54(4), 387–408 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Nowicki, R., Slowinski, R., Stefanowski, J.: Evaluation of vibroacoustic diagnostic symptoms by means of the rough sets theory. J. Comput. Ind. 20, 141–152 (1992)

    Article  Google Scholar 

  9. Tripathy, B.K., Acharjya, D.P., Cynthya, V.: A framework for intelligent medical diagnosis using rough set with formal concept analysis. Int. J. Artif. Intell. Appl. 2(2), 45–66 (2011)

    Google Scholar 

  10. Saleem, D.M.A., Acharjya, D.P., Kannan, A., Iyengar, N.C.S.N.: An intelligent knowledge mining model for kidney cancer using rough set theory. Int. J. Bioinform. Res. Appl. 8, 417–435 (2012)

    Article  Google Scholar 

  11. Slezak, D.: Rough sets and few-objects-many-attributes problem: The case study of analysis of gene expression data sets. In: Frontiers in the Convergence of Bioscience and Information Technologies, FBIT, pp. 437–442. IEEE (2007). https://doi.org/10.1109/fbit.2007.160

  12. Zhou, Z.Y., Shen, G.Z.: Application of the theory of rough set in intelligence analysis for index weight determination. Inf. Stud. Theory Appl. 35(9), 61–65 (2012)

    Google Scholar 

  13. Hassanien, A.E., Schaefer, G., Darwish, A.: Computational intelligence in speech and audio processing: recent advances. In: Soft Computing in Industrial Applications. Springer, Berlin, Heidelberg, pp. 303–311 (2010)

    Google Scholar 

  14. Pal, S.K., Mitra, P.: Multispectral image segmentation using the rough-set-initialized EM algorithm. IEEE Trans. Geosci. Remote Sens. 40(11), 2495–2501 (2002)

    Article  Google Scholar 

  15. Pawlak, Z.: Some remarks on conflict analysis. Eur. J. Oper. Res. 166(3), 649–654 (2005)

    Article  Google Scholar 

  16. Slowinski, R.: Rough set approach to decision analysis. AI Expert 10, 18–25 (1995)

    Google Scholar 

  17. Slowinski, R.: Rough set theory and its applications to decision aid. Belg. J. Oper. Res. Spec. Issue Francoro 35(3–4), 81–90 (1995)

    MathSciNet  MATH  Google Scholar 

  18. Wang, M.H.: Study on the application of rough set in railway dispatching system. China Railway Sci. 25(4), 103–107 (2004)

    MathSciNet  Google Scholar 

  19. Pérez-Díaz, N., Ruano-Ordás, D., Méndez, J.R., Gálvez, J.F., Fdez-Riverola, F.: Rough sets for spam filtering: selecting appropriate decision rules for boundary e-mail classification. Appl. Soft Comput. 12(11), 3671–3682 (2012)

    Article  Google Scholar 

  20. Smarandache, F.: A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic. American Research Press, Rehoboth (1998)

    Google Scholar 

  21. Wang, H., Smarandache, F., Zhang, Y., Sunderraman, R.: Single valued neutrosophic sets. Multispace Multistructure 4, 410–413 (2010)

    MATH  Google Scholar 

  22. Pramanik, S., Roy, T.K.: Neutrosophic game theoretic approach to Indo-Pak conflict over Jammu-Kashmir. Neutrosophic Sets Syst. 2, 82–101 (2014)

    Google Scholar 

  23. Biswas, P., Pramanik, S., Giri, B.C.: Entropy based grey relational analysis method for multi-attribute decision making under single valued neutrosophic assessments. Neutrosophic Sets Syst. 2, 102–110 (2014)

    Google Scholar 

  24. Biswas, P., Pramanik, S., Giri, B.C.: A new methodology for neutrosophic multi-attribute decision making with unknown weight information. Neutrosophic Sets Syst. 3, 42–52 (2014)

    Google Scholar 

  25. Biswas, P., Pramanik, S., Giri, B.C.: TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment. Neural Comput. Appl. (2015). https://doi.org/10.1007/s00521-015-1891-2

    Article  Google Scholar 

  26. Biswas, P., Pramanik, S., Giri, B.C.: Cosine similarity measure based multi-attribute decision-making with trapezoidal fuzzy neutrosophic numbers. Neutrosophic Sets Syst. 8, 47–57 (2015)

    Google Scholar 

  27. Biswas, P., Pramanik, S., Giri, B.C.: Aggregation of triangular fuzzy neutrosophic set information and its application to multi-attribute decision making. Neutrosophic Sets Syst. 12, 20–40 (2016)

    Google Scholar 

  28. Biswas, P., Pramanik, S., Giri, B.C.: Value and ambiguity index based ranking method of single-valued trapezoidal neutrosophic numbers and its application to multi-attribute decision making. Neutrosophic Sets Syst. 12, 127–138 (2016)

    Google Scholar 

  29. Chi, P., Liu, P.: An extended TOPSIS method for the multi-attribute decision making problems on interval neutrosophic set. Neutrosophic Sets Syst. 1, 63–70 (2013)

    Google Scholar 

  30. Kharal, A.: A neutrosophic multi-criteria decision making method. New Math. Nat. Comput. 10, 143–162 (2014)

    Article  MathSciNet  Google Scholar 

  31. Liu, P., Chu, Y., Li, Y., Chen, Y.: Some generalized neutrosophic number Hamacher aggregation operators and their application to group decision making. Int. J. Fuzzy Syst. 16(2), 242–255 (2014)

    Google Scholar 

  32. Liu, P., Wang, Y.: Multiple attribute decision-making method based on single-valued neutrosophic normalized weighted Bonferroni mean. Neural Comput. Appl. 25(7), 2001–2010 (2014)

    Article  Google Scholar 

  33. Peng, J.J., Wang, J.Q., Wang, J., Zhang, H.Y., Chen, X.H.: Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems. Int. J. Syst. Sci. 47(10), 2342–2358 (2016)

    Article  Google Scholar 

  34. Pramanik, S., Biswas, P., Giri, B.C.: Hybrid vector similarity measures and their applications to multi-attribute decision making under neutrosophic environment. Neural Comput. Appl. (2015). https://doi.org/10.1007/s00521-015-2125-3

    Article  Google Scholar 

  35. Pramanik, S., Dalapati, S., Roy, T.K.: Logistics center location selection approach based on neutrosophic multi-criteria decision making. In: Smarandache, F., Pramanik, S. (eds.) New Trends in Neutrosophic Theory and Applications, pp. 161–174. Pons asbl Brussells, Belgium (2016)

    Google Scholar 

  36. Broumi, S., Ye, J., Smarandache, F.: An extended TOPSIS method for multiple attribute decision making based on interval neutrosophic uncertain linguistic variables. Neutrosophic Sets Syst. 8, 22–31 (2015)

    Google Scholar 

  37. Sahin, R., Liu, P.: Maximizing deviation method for neutrosophic multiple attribute decision making with incomplete weight information. Neural Comput. Appl. (2015). https://doi.org/10.1007/s00521-015-1995-8

    Article  Google Scholar 

  38. Ye, J.: Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment. Int. J. Gener. Syst. 42, 386–394 (2013)

    Article  MathSciNet  Google Scholar 

  39. Ye, J.: Single valued neutrosophic cross-entropy for multicriteria decision making problems. Appl. Math. Model. 38(3), 1170–1175 (2014)

    Article  MathSciNet  Google Scholar 

  40. Ye, J.: A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Intell. Fuzzy Syst. 26, 2459–2466 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Ye, J.: Trapezoidal neutrosophic set and its application to multiple attribute decision-making. Neural Comput. Appl. 26, 1157–1166 (2015)

    Article  Google Scholar 

  42. Ye, J.: Bidirectional projection method for multiple attribute group decision making with neutrosophic numbers. Neural Comput. Appl. (2016). https://doi.org/10.1007/s00521-015-2123-5

    Article  Google Scholar 

  43. Mondal, K., Pramanik, S.: Multi-criteria group decision making approach for teacher recruitment in higher education under simplified Neutrosophic environment. Neutrosophic Sets Syst. 6, 28–34 (2014)

    Google Scholar 

  44. Mondal, K., Pramanik, S.: Neutrosophic decision making model of school choice. Neutrosophic Sets Syst. 7, 62–68 (2015)

    Google Scholar 

  45. Mondal, K., Pramanik, S.: Neutrosophic tangent similarity measure and its application to multiple attribute decision making. Neutrosophic Sets Syst. 9, 85–92 (2015)

    Google Scholar 

  46. Guo, Y., Cheng, H.D.: New neutrosophic approach to image segmentation. Pattern Recogn. 42(5), 587–595 (2009)

    Article  Google Scholar 

  47. Cheng, H.D., Guo, Y., Zhang, Y.: A novel image segmentation approach based on neutrosophic set and improved fuzzy c-means algorithm. New Math. Nat. Comput. 7(1), 155–171 (2011)

    Article  Google Scholar 

  48. Guo, Y., Sengür, A., Ye, J.: A novel image thresholding algorithm based on neutrosophic similarity score. Measurement 58, 175–186 (2014)

    Article  Google Scholar 

  49. Ye, J.: Improved cosine similarity measures of simplified neutrosophic sets for medical diagnoses. Artif. Intell. Med. 63, 171–179 (2015)

    Article  Google Scholar 

  50. Broumi, S., Smarandache, F., Dhar, M.: Rough neutrosophic sets. Ital. J. Pure Appl. Math. 32, 493–502 (2014)

    MathSciNet  MATH  Google Scholar 

  51. Mondal, K., Pramanik, S.: Rough neutrosophic multi-attribute decision-making based on grey relational analysis. Neutrosophic Sets Syst. 7, 8–17 (2014)

    Google Scholar 

  52. Deng, J.L.: Introduction to grey system theory. J. Grey Syst. 1(1), 1–24 (1989)

    MathSciNet  MATH  Google Scholar 

  53. Pramanik, S., Mukhopadhyaya, D.: Grey relational analysis based intuitionistic fuzzy multi criteria group decision-making approach for teacher selection in higher education. Int. J. Comput. Appl. 34(10), 21–29 (2011)

    Google Scholar 

  54. Mondal, K., Pramanik, S.: Rough neutrosophic multi-attribute decision-making based on rough accuracy score function. Neutrosophic Sets Syst. 8, 16–22 (2015)

    Google Scholar 

  55. Pramanik, S., Mondal, K.: Cotangent similarity measure of rough neutrosophic sets and its application to medical diagnosis. J. New Theory 4, 90–102 (2015)

    Google Scholar 

  56. Pramanik, S., Mondal, K.: Cosine similarity measure of rough neutrosophic sets and its application in medical diagnosis. Glob. J. Adv. Res. 2(1), 212–220 (2015)

    Google Scholar 

  57. Pramanik, S., Mondal, K.: Some rough neutrosophic similarity measure and their application to multi attribute decision making. Glob. J. Engine Sci. Res. Manage. 2(7), 61–74 (2015)

    Google Scholar 

  58. Mondal, K., Pramanik, S.: Decision making based on some similarity measures under interval rough neutrosophic environment. Neutrosophic Sets Syst. 10, 46–57 (2015)

    Google Scholar 

  59. Wang, H., Smarandache, F., Sunderraman, R., Zhang, Y.Q.: Interval Neutrosophic Sets and Logic: Theory and Applications in Computing: Theory and Applications in Computing. Hexis, Phoenix, AZ (2005)

    MATH  Google Scholar 

  60. Mondal, K., Pramanik, S., Smarandache, F.: Several trigonometric Hamming similarity measures of rough neutrosophic sets and their applications in decision making. In: Smarandache, F., Pramanik, S. (eds.) New Trends in Neutrosophic Theory and Applications, pp. 93–103. Pons Editions, Brussels (2016)

    Google Scholar 

  61. Mondal, K., Pramanik, S., Smarandache, F.: Multi-attribute decision making based on rough neutrosophic variational coefficient similarity measure. Neutrosophic Sets Syst. 13, 3–17 (2016)

    Google Scholar 

  62. Mondal, K., Pramanik, S., Smarandache, F.: Rough neutrosophic TOPSIS for multi-attribute group decision making. Neutrosophic Sets Syst. 13, 105–117 (2016)

    Google Scholar 

  63. Pramanik, S., Roy, R., Roy, T.K.: Multi criteria decision making based on projection and bidirectional projection measures of rough neutrosophic sets. In: Smarandache, F., Pramanik, S. (eds.) New Trends in Neutrosophic Theory and Applications, vol. II. Pons Editions, Brussels (2017) (in press)

    Google Scholar 

  64. Pramanik, S., Roy, R., Roy, T.K., Smarandache, F.: Multi criteria decision making using correlation coefficient under rough neutrosophic environment. Neutrosophic Sets Syst. 17, 29–36 (2017)

    Google Scholar 

  65. Mondal, M., Pramanik, S.: Tri-complex rough neutrosophic similarity measure and its application in multi-attribute decision making. Crit. Rev. 11, 26–40 (2015)

    Google Scholar 

  66. Mondal, K., Pramanik, S., Smarandache, F.: Rough neutrosophic hyper-complex set and its application to multi-attribute decision making. Crit. Rev. 13, 111–126 (2016)

    Google Scholar 

  67. Yang, H.L., Zhang, C.L., Guo, Z.L., Liu, Y.L., Liao, X.: A hybrid model of single valued neutrosophic sets and rough sets: single valued neutrosophic rough set model. Soft. Comput. 21(21), 6253–6267 (2017)

    Article  Google Scholar 

  68. Guo, Z.L., Liu, Y.L., Yang, H.L.: A novel rough set model in generalized single valued neutrosophic approximation spaces and its application. Symmetry 9(7), 119 (2017). https://doi.org/10.3390/sym9070119

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surapati Pramanik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mondal, K., Pramanik, S., Giri, B.C. (2019). Rough Neutrosophic Aggregation Operators for Multi-criteria Decision-Making. In: Kahraman, C., Otay, İ. (eds) Fuzzy Multi-criteria Decision-Making Using Neutrosophic Sets. Studies in Fuzziness and Soft Computing, vol 369. Springer, Cham. https://doi.org/10.1007/978-3-030-00045-5_5

Download citation

Publish with us

Policies and ethics