Skip to main content

An Integrated AHP & DEA Methodology with Neutrosophic Sets

  • Chapter
  • First Online:
Fuzzy Multi-criteria Decision-Making Using Neutrosophic Sets

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 369))

Abstract

As a generalization of intuitionistic fuzzy sets, neutrosophic sets have been developed to represent vague, imprecise, incomplete, and inconsistent information existing in real world. The independent components of a neutrosophic set are truth, indeterminacy, and falsity. In the literature, neutrosophic sets have been employed in the development of new extensions of multiple criteria decision making methods such as neutrosophic TOPSIS and neutrosophic VIKOR. In this chapter, a new Neutrosophic Analytic Hierarchy Process (NAHP) is proposed. Then, neutrosophic AHP is integrated with neutrosophic Data Envelopment Analysis (DEA) for bringing solution to the performance measurement problems. The inputs and outputs of DEA method are weighted by Neutrosophic AHP. The proposed methodology is implemented to solve performance evaluation problem of private universities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Basset, M., Mohammed, M., Sangaiah, A.K.: Neutrosophic AHP-Delphi Group decision making model based on trapezoidal neutrosophic numbers. J. Ambient Intell. Hum. Comput. pp. 1–17 (2017)

    Google Scholar 

  2. Alcantud, J.C.R., Torra, V.: Decomposition theorems and extension principles for hesitant fuzzy sets. Inf. Fusion 41(2018), 48–56 (2018)

    Article  Google Scholar 

  3. Angiz, M.Z., Emrouznejad, L.A., Mustafa, A., Al-Eraqi, A.S.: Aggregating preference ranking with fuzzy data envelopment analysis. Knowl. Based Syst. 23(6), 512–519 (2010)

    Article  Google Scholar 

  4. Arya, A., Yadav, S.P.: Development of intuitionistic fuzzy super-efficiency slack based measure with an application to health sector. Comput. Ind. Eng. 115, 368–380 (2018)

    Article  Google Scholar 

  5. Ashrafi, A., Kaleibar, M.M.: Cost, revenue and profit efficiency models in generalized fuzzy data envelopment analysis. Fuzzy Inf. Eng. 9(2), 237–246 (2017)

    Google Scholar 

  6. Atanassov, K.: Intuitionistic fuzzy logics as tools for evaluation of data mining processes. Knowl. Based Syst. 80, 122–130 (2015)

    Article  Google Scholar 

  7. Badiezadeh, T., Saen, R.F., Samavati, T.: Assessing sustainability of supply chains by double frontier network DEA: a big data approach. Comput. Oper. Res. Available online 6 June 2017. ISSN 0305-0548

    Google Scholar 

  8. Banker, R.D., Charnes, A., Cooper, W.W.: Models for the estimation of technical and scale inefficiencies in data envelopment analysis. Manage. Sci. 30, 1078–1092 (1984)

    Article  Google Scholar 

  9. Bolturk, E., Kahraman, C.: A Novel Interval-Valued Neutrosophic AHP with Cosine Similarity Measurement, Soft Computing. Accepted for publication (2018)

    Google Scholar 

  10. Broumi, S. Smarandache, F.: Neutrosophic Theory and its Applications Collected Papers, I, EuropaNova Brussels, pp. 256–266 (2014)

    Google Scholar 

  11. Cavone, G., Dotoli, M., Epicoco, N., Seatzu, C.: A decision making procedure for robust train rescheduling based on mixed integer linear programming and data envelopment analysis. Appl. Math. Model. 52, 255–273 (2017)

    Article  MathSciNet  Google Scholar 

  12. Charnes, A., Cooper, W.W., Rhodes, E.: Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2, 429–444 (1978)

    Article  MathSciNet  Google Scholar 

  13. Cheng, Y., Peng, J., Zhou, Z., Gu, X., Liu, W.: A hybrid DEA-adaboost model in supplier selection for fuzzy variable and multiple objectives. IFAC-PapersOnLine 50(1), 12255–12260 (2017)

    Article  Google Scholar 

  14. Chowdhury, H., Zelenyuk, V.: Performance of hospital services in Ontario: DEA with truncated regression approach. Omega 63, 111–122 (2016)

    Article  Google Scholar 

  15. Eden, C., Jones, S., Sims D.: Messing About in Problems: An Informal Structured Approach to their Identification and Management. Pergamon Press, New York (1983)

    Google Scholar 

  16. Ersoy, K., Kavuncubasi, S., Ozcan, Y.A., Harris, J.M.: Technical efficiencies of Turkish hospitals: DEA approach. J. Med. Syst. 21(2), 67–74 (1997)

    Article  Google Scholar 

  17. Folan, P., Browne, J., Jagdev, H.: Performance: its meaning and content for today’s business research. Comput. Ind. 58(7), 605–620 (2007)

    Article  Google Scholar 

  18. Geng, X., Qiu, H., Gong, X.: An extended 2-tuple linguistic DEA for solving MAGDM problems considering the influence relationships among attributes. Comput. Ind. Eng. 112, 135–146 (2017)

    Article  Google Scholar 

  19. Geng, Z., Dong, J., Han, Y., Zhu, Q.: Energy and environment efficiency analysis based on an improved environment DEA cross-model: case study of complex chemical processes. Appl. Energy 205, 465–476 (2017)

    Article  Google Scholar 

  20. Hatami-Marbini, A., Beigi, Z.G., Hougaard, J.L., Gholami, K.: Measurement of returns-to-scale using interval data envelopment analysis models. Comput. Ind. Eng. Available online 27 Dec. 2017 (2017b)

    Google Scholar 

  21. Hatami-Marbini, A., Ebrahimnejad, A., Sebastián Lozano, S.: Fuzzy efficiency measures in data envelopment analysis using lexicographic multiobjective approach. Comput. Ind. Eng. 105, 362–376 (2017)

    Article  Google Scholar 

  22. Izadikhah, M., Tavana, M., Di Caprio, D., Santos-Arteaga, F.J.: A novel two-stage DEA production model with freely distributed initial inputs and shared intermediate outputs. Expert Systems with Applications (2017). ISSN 0957-4174

    Google Scholar 

  23. Kahraman, C., Tolga, E., Ulukan, Z.: Selection among advanced manufacturing technologies using fuzzy data envelopment analysis. Tatra Mountains Math. Publ. 16(2), 311–324 (1999)

    MathSciNet  MATH  Google Scholar 

  24. Kahraman, C., Öztayşi, B., Uçal Sarı, I., Turanoğlu, E.: Fuzzy analytic hierarchy process with interval type-2 fuzzy sets. Knowl. Based Syst. 59, 48–57 (2014)

    Article  Google Scholar 

  25. Karaşan, A., Kahraman, C., Boltürk, E.: Interval-valued neutrosophic EDAS method: an application to prioritization of social responsibility projects. In: Kahraman, C., Otay, İ (eds.) Fuzzy Multicriteria Decision Making Using Neutrosophic Sets, Springer, Berlin, (in press, 2019)

    Google Scholar 

  26. Karasan, A., Kahraman, C.: A novel interval-valued neutrosophic EDAS method: prioritization of the United Nations national sustainable development goals. Soft Computing (Accepted for Publication) (2018)

    Google Scholar 

  27. Kordrostami, S., Sayyad Noveiri, M.J.: Evaluating the multi-period systems efficiency in the presence of fuzzy data. Fuzzy Inf. Eng. 9(3), 281–298 (2017)

    Article  MathSciNet  Google Scholar 

  28. Kulak, O., Kahraman, C., Öztayşi, B., & Tanyaş, M.: Multi-attribute information technology project selection using fuzzy axiomatic design. J. Enterp. Inf. Manage. 18(3) (2005). https://doi.org/10.1108/17410390510591978

    Article  Google Scholar 

  29. Lebas, M.J.: Performance measurement and performance management. Int. J. Prod. Econ. 41(1–3), 23–35 (1995)

    Article  Google Scholar 

  30. Meyer, M.W.: Rethinking Performance Measurement: Beyond the Balanced Scorecard. Cambridge University Press, New York (2002)

    Google Scholar 

  31. Miranda, R.C., Montevechi, J.A.B., da Silva, A.F., Silva Marins, F.A.: Increasing the efficiency in integer simulation optimization: Reducing the search space through data envelopment analysis and orthogonal arrays. Eur. J. Oper. Res. 262(2), 673–681 (2017)

    Article  Google Scholar 

  32. Mulvey, J.M., Vanderbei, R.J., Zenios, S.A.: Robust optimization of large-scale systems. Oper. Res. 43, 264–281 (1995)

    Article  MathSciNet  Google Scholar 

  33. Otay, İ., Oztaysi, B., Cevik Onar, S., Kahraman, C.: Multi-expert performance evaluation of healthcare institutions using an integrated intuitionistic fuzzy AHP&DEA methodology. Knowl. Based Syst. 133, 90–106 (2017)

    Article  Google Scholar 

  34. Park, S., Ok, C., Ha, C.: A stochastic simulation-based holistic evaluation approach with DEA for vendor selection. Comput. Oper. Res. Available online 12 Aug. 2017. In press, Corrected Proof (2017)

    Google Scholar 

  35. Podinovski, V.V.: Bridging the gap between the constant and variable returns-to-scale models: selective proportionality in data envelopment analysis. J. Oper. Res. Soc. 55(3), 265–276 (2004)

    Article  MathSciNet  Google Scholar 

  36. Qin R., Liu Y., Liu Z., Wang G.: Modeling fuzzy DEA with type-2 fuzzy variable coefficients. In: Yu, W., He, H., Zhang, N. (eds.) Advances in Neural Networks—ISNN 2009. ISNN 2009. Lecture Notes in Computer Science, vol. 5552. Springer, Berlin, Heidelberg (2009)

    Chapter  Google Scholar 

  37. Radwan, M.N., Senousy, M.B., Riad, A.E.D.M.: Neutrosophic logic approach for evaluating learning management systems. Neutrosophic Sets Syst. 11, 3–7 (2016)

    Google Scholar 

  38. Ray, S.C.: Data Envelopment Analysis Theory and Techniques for Economics and Operations Research. Cambridge University Press, New York (2004)

    Book  Google Scholar 

  39. Sağlam, Ü.: A two-stage data envelopment analysis model for efficiency assessments of 39 state’s wind power in the United States. Energy Convers. Manag. 146, 52–67 (2017)

    Article  Google Scholar 

  40. Smarandache, F.: Neutrosophic Logic and Set, mss. (1995) http://fs.gallup.unm.edu/neutrosophy.htm

  41. Soltanzadeh, E., Omrani, H.: Dynamic network data envelopment analysis model with fuzzy inputs and outputs: an application for Iranian Airlines. Appl. Soft Comput. 63, 268–288 (2018)

    Article  Google Scholar 

  42. Song, M., Zhu, Q., Peng, J., Santibanez Gonzalez, E.D.R.: Improving the evaluation of cross efficiencies: a method based on Shannon entropy weight. Comput. Ind. Eng. 112(2017), 99–106 (2017)

    Article  Google Scholar 

  43. Toloo, M., Keshavarz, E., Hatami-Marbini, A.: Dual-role factors for imprecise data envelopment analysis. Omega, Available online 15 May 2017 (2017). ISSN 0305-0483

    Google Scholar 

  44. Wang, H., Smarandache, F., Zhang, Y. R.: Sunderraman, Single valued neutrosophic sets. In: Proceedings of 10th 476 International Conference on Fuzzy Theory and Technology, Salt Lake City, 477 Utah (2005)

    Google Scholar 

  45. Yan, H., Wei, Q.: Data envelopment analysis classification machine. Inf. Sci. 181(22), 5029–5041 (2011)

    Article  Google Scholar 

  46. Ye, J.: Subtraction and division operations of simplified neutrosophic sets. Information 8(2), 51 (2017) https://doi.org/10.3390/info8020051

    Article  Google Scholar 

  47. Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  48. Zahedi-Seresht, M., Jahanshahloo, G.-R., Josef Jablonsky, J.: A robust data envelopment analysis model with different scenarios. Appl. Math. Model. 52, 306–319 (2017)

    Article  MathSciNet  Google Scholar 

  49. Zavadskas, E.K., Bausys, R., Juodagalviene, B., Garnyte-Sapranaviciene, I.: Model for residential house element and material selection by neutrosophic MULTIMOORA method. Eng. Appl. Artif. Intell. 64, 315–324 (2017)

    Article  Google Scholar 

  50. Zhang, H.Y., Wang, J.Q., Chen, X.H.: Interval neutrosophic sets and their application in multicriteria decision-making problems. Sci. World J. 2014, 15 (2014)

    Google Scholar 

  51. Zhang, H., Wang, J., Chen, X.: An outranking approach for multi-criteria decision-making problems with interval-valued neutrosophic sets. Neural Comput. Appl. 27(3), 615–627 (2016)

    Article  Google Scholar 

  52. Zhou, X., Xu, Z., Yao, L., Tu, Y., Lev, B., Pedrycz, W.: A novel data envelopment analysis model for evaluating industrial production and environmental management system. J. Clean. Prod. 170, 773–788 (2018)

    Article  Google Scholar 

  53. Zhu, W., Yu, Y., Sun, P.: Data envelopment analysis cross-like efficiency model for non-homogeneous decision-making units: the case of United States companies’ low-carbon investment to attain corporate sustainability. Eur. J. Oper. Res. Available online 10 Aug. 2017 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İrem Otay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kahraman, C., Otay, İ., Öztayşi, B., Onar, S.Ç. (2019). An Integrated AHP & DEA Methodology with Neutrosophic Sets. In: Kahraman, C., Otay, İ. (eds) Fuzzy Multi-criteria Decision-Making Using Neutrosophic Sets. Studies in Fuzziness and Soft Computing, vol 369. Springer, Cham. https://doi.org/10.1007/978-3-030-00045-5_24

Download citation

Publish with us

Policies and ethics