Skip to main content

VIKOR Method for Decision Making Problems in Interval Valued Neutrosophic Environment

  • Chapter
  • First Online:

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 369))

Abstract

In this chapter, we discuss the VIKOR method for solving MCDM problem with interval valued neutrosophic number . First we define interval-valued neutrosophic number . The different properties of that type of numbers are also discussed. For solving MCDM problem we propose Interval-valued neutrosophic weighted arithmetic average (INNWAA) operator and Interval-valued neutrosophic weighted geometric average (INNWGA) operator in neutrosophic environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zadeh, L.A.: Fuzzy Sets. Inform Control 8, 338–353 (1965)

    Article  Google Scholar 

  2. Atanassov, K.T.: Intuitionistic Fuzzy Sets. Pysica-Verlag A Springer-Verlag Company, New York (1999)

    Book  Google Scholar 

  3. Smarandache, F.: A Unifying Field in Logics Neutrosophy: Neutrosophic Probability, Set and Logic. American Research Press, Rehoboth (1998)

    Google Scholar 

  4. Wang, H.B., Smarandache, F., Zhang, Y.Q., Sunderraman, R.: Singlevalued neutrosophic sets. Multispace Multistruct. 4, 410–413 (2010)

    MATH  Google Scholar 

  5. Ye, J.: A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Intell. Fuzzy Syst. 26(5), 2459–2466 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Peng, J.J., Wang, J.Q., Wang, J., Zhang, H.Y., Chen, X.H.: Simplified neutrosophic sets and their applications in multi-criteria group decision making problems. Int. J. Syst. Sci. (2015)

    Google Scholar 

  7. Peng, J.J., Wang, J.Q., Wu, X.H., Zhang, H.Y., Chen, X.H.: Thefuzzy cross-entropy for intuitionistic hesitant fuzzy sets and their application in multi-criteria decision-making. Int. J. Syst. Sci. 46(13), 2335–2350 (2014)

    Article  Google Scholar 

  8. Wang, J.Q., Peng, J.J., Zhang, H.Y., Liu, T., Chen, X.H.: An uncertain linguistic multi-criteria group decision-making method based ona cloud model. Group Decis. Negot. 24(1), 171–192 (2015)

    Article  Google Scholar 

  9. Deli, I., Ali, M., Smarandache, F.: Bipolar Neutrosophic Sets and Their Application Based on Multi-criteria Decision Making Problems (2015)

    Google Scholar 

  10. Peng, J.J., Wang, J.Q., Wu, X.H., Wang, J., Chen, X.H.: Multivaluedneutrosophic sets and power aggregation operators with their applications in multi-criteria group decision-making problems. Int. Comput. Intell. Syst. 8(2), 345–363 (2015)

    Article  Google Scholar 

  11. Wang, J.Q., Li, X.E.: The TODIMmethod with multi-valued neutrosophicsets. Control Decis. 30(6), 1139–1142 (2015)

    Google Scholar 

  12. Selin Soner Kara and Naoufel Cheikhrouhou: A multi criteria group decision making approach for collaborative software selection problem. J. Intell. Fuzzy Syst. 26, 37–47 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Wang, Xin-Fan, Wang, Jian-Qiang, Yang, Wu-E: Multi-criteria group decision making method based on intuitionistic linguistic aggregation operators. J. Intell. Fuzzy Syst. 26, 115–125 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Chen, X., Yang, L., Wang, P., Yue, W.: A Fuzzy multicriteria group decision-making method with new entropy of interval-valued intuitionistic fuzzy sets. J. Appl. Math. 1–8 (2013)

    MATH  Google Scholar 

  15. Wang, J., Han, Z., Zhang, H.: Multi-criteria group decision-making method based on intuitionistic interval fuzzy information. Group Decis. Negot. 23, 715–733 (2014)

    Article  Google Scholar 

  16. Chaio, K.-P.: The multi-criteria group decision making methodology using type 2 fuzzy linguistic judgments, Appl. Soft Comput. (2016)

    Google Scholar 

  17. Wibowo, S., Grandhi, S., Deng, H.: Multicriteria Group Decision Making for Selecting Human Resources Management Information Systems Projects. IEEE (2016)

    Google Scholar 

  18. Hanine, M., Boutkhoum, O., Tikniouine, A., Agouti, T.: A new web-based framework development for fuzzy multi-criteria group decision-making. SpringerPlus 5, 601 (2016)

    Google Scholar 

  19. Büyüközkan, G., Güleryüz, S.: Multi criteria group decision making approach for smart phone selection using intuitionistic fuzzy TOPSIS. Int. J. Comput. Intell. Syst. 9(4), 709–725 (2016)

    Article  Google Scholar 

  20. Efe, B.: An integrated fuzzy multi criteria group decision making approach for ERP system selection. Appl. Soft Comput. (2016)

    Google Scholar 

  21. Seddiki, M., Anouche, K., Bennadji, A., Boateng, P.: A multi-criteria group decision-making method for the thermal innovation of masonry buildings: the case of Algeria. Energy Build. 129, 471–483 (2016)

    Article  Google Scholar 

  22. Shen, F., Xu, J., Xu, Z.: An outranking sorting method for multi-criteria group decision making using intuitionistic fuzzy sets. Inf. Sci. (2016)

    Google Scholar 

  23. You, X., Chen, T., Yang, Q.: Approach to multi-criteria group decision-making problems based on the best-worst-method and ELECTRE method. Symmetry 8(95), 1–16 (2016)

    MathSciNet  Google Scholar 

  24. Chuu, S.J.: Selecting the advanced manufacturing technology using fuzzy multiple attributes group decision making with multiple fuzzy information. Comput. Ind. Eng. 57(3), 1033–1042 (2007)

    Article  Google Scholar 

  25. Liu, P., X.: Multi attribute group decision making methods based on linguistic intuitionistic fuzzy power Bonferroni mean operators. Complexity 2017, Article ID 3571459, 15 (2017) Hindawi Publishing Corporation

    Google Scholar 

  26. Chang, C.L., Hsu, C.H.: Multi-criteria analysis via the VIKOR method for prioritizing land-use restraint strategies in the Tseng-Wen reservoir watershed. J. Environ. Manage. 90, 3226–3230 (2009)

    Article  Google Scholar 

  27. Chen, L.Y., Wang, T.-C.: Optimizing partners’ choice in IS/IT outsourcing projects: the strategic decision of fuzzy VIKOR. Int. J. Prod. Econ. 120, 233–242 (2009)

    Article  Google Scholar 

  28. Sayadi, M.K., Heydari, M., Shahanaghi, K.: Extension of VIKOR method for decision making problem with interval numbers. Appl. Math. Model. 33, 2257–2262 (2009)

    Article  MathSciNet  Google Scholar 

  29. Chatterjee, P., Athawale, V.M., Chakraborty, S.: Selection of materials using compromise ranking and outranking methods. Mater. Des. 30, 4043–53 (2009)

    Article  Google Scholar 

  30. Civic, A., Vucijak, B.: Multi-criteria optimization of insulation options for warmth of buildings to increase energy efficiency. Procedia Eng. 69, 911–920 (2014)

    Article  Google Scholar 

  31. Sanayei, A., Mousavi, S.F., Yazdankhah, A.: Group decision making process for supplier selection with VIKOR under fuzzy environment. Expert Syst. Appl. 37, 24–30 (2010)

    Article  Google Scholar 

  32. Shemshadi, A., Shirazi, H., Toreihi, M., Tarokh, M.J.: A fuzzy VIKOR method for supplier selection based on entropy measure for objective weighting. Expert Syst. Appl. 38, 12160–12167 (2011)

    Article  Google Scholar 

  33. Devi, K.: Extension of VIKOR method in intuitionist fuzzy environment for robot selection. Expert Syst. Appl. 38, 14163–14168 (2011)

    Google Scholar 

  34. Wang, J., Han, Z., Zhang, H.: Multi-criteria group decision-making method based on intuitionistic interval fuzzy information. Group Decis. Negot. 23, 715–733 (2014)

    Article  Google Scholar 

  35. Aiwua, Z., Jianguoa, D., Hongjunb, G.: Interval valued neutrosophic sets and multi-attribute decision-making based on generalized weighted aggregation operator. J. Intell. Fuzzy Syst. 29, 2697–2706 (2015)

    Article  Google Scholar 

  36. Zeshui, Xu: On method for uncertain multiple attribute decision making problems with uncertain multiplicative preference information on alternatives. Fuzzy Optim. Decis. Making 4, 131–139 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The second author of the article wishes to convey his heartiest thanks to Miss. Gullu for inspiring him to write the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankar Prasad Mondal .

Editor information

Editors and Affiliations

Appendices

Appendix 1

$$ \begin{aligned} \Delta_{1} & = \left\langle {\left[ {0.174^{{p_{1} }} 0.242^{{\left( {1 - p_{1} } \right)}} } \right],\left[ {0.134^{{p_{2} }} 0.313^{{\left( {1 - p_{2} } \right)}} } \right],\left[ {0.193^{{p_{3} }} 0.268^{{\left( {1 - p_{3} } \right)}} } \right]} \right\rangle \\ \Delta_{2} & = \left\langle {\left[ {0.169^{{p_{1} }} 0.228^{{\left( {1 - p_{1} } \right)}} } \right],\left[ {0.091^{{p_{2} }} 0.234^{{\left( {1 - p_{2} } \right)}} } \right],\left[ {0.168^{{p_{3} }} 0.240^{{\left( {1 - p_{3} } \right)}} } \right]} \right\rangle \\ \Delta_{3} & = \left\langle {\left[ {0.178^{{p_{1} }} 0.237^{{\left( {1 - p_{1} } \right)}} } \right],\left[ {0.157^{{p_{2} }} 0.334^{{\left( {1 - p_{2} } \right)}} } \right],\left[ {0.210^{{p_{3} }} 0.276^{{\left( {1 - p_{3} } \right)}} } \right]} \right\rangle \\ \Delta_{4} & = \left\langle {\left[ {0.159^{{p_{1} }} 0.219^{{\left( {1 - p_{1} } \right)}} } \right],\left[ {0.110^{{p_{2} }} 0.256^{{\left( {1 - p_{2} } \right)}} } \right],\left[ {0.122^{{p_{3} }} 0.174^{{\left( {1 - p_{3} } \right)}} } \right]} \right\rangle \\ \Delta_{5} & = \left\langle {\left[ {0.179^{{p_{1} }} 0.238^{{\left( {1 - p_{1} } \right)}} } \right],\left[ {0.191^{{p_{2} }} 0.366^{{\left( {1 - p_{2} } \right)}} } \right],\left[ {0.153^{{p_{3} }} 0.226^{{\left( {1 - p_{3} } \right)}} } \right]} \right\rangle \\ \end{aligned} $$

Appendix 2

$$ \begin{aligned} \sigma_{1} & = \left\langle {\left[ {0.039^{{p_{1} }} 0.066^{{\left( {1 - p_{1} } \right)}} } \right],\left[ {0.042^{{p_{2} }} 0.091^{{\left( {1 - p_{2} } \right)}} } \right],\left[ {0.058^{{p_{3} }} 0.072^{{\left( {1 - p_{3} } \right)}} } \right]} \right\rangle \\ \sigma_{2} & = \left\langle {\left[ {0.049^{{p_{1} }} 0.065^{{\left( {1 - p_{1} } \right)}} } \right],\left[ {0.030^{{p_{2} }} 0.074^{{\left( {1 - p_{2} } \right)}} } \right],\left[ {0.055^{{p_{3} }} 0.069^{{\left( {1 - p_{3} } \right)}} } \right]} \right\rangle \\ \sigma_{3} & = \left\langle {\left[ {0.049^{{p_{1} }} 0.066^{{\left( {1 - p_{1} } \right)}} } \right],\left[ {0.052^{{p_{2} }} 0.103^{{\left( {1 - p_{2} } \right)}} } \right],\left[ {0.065^{{p_{3} }} 0.081^{{\left( {1 - p_{3} } \right)}} } \right]} \right\rangle \\ \sigma_{4} & = \left\langle {\left[ {0.053^{{p_{1} }} 0.073^{{\left( {1 - p_{1} } \right)}} } \right],\left[ {0.025^{{p_{2} }} 0.066^{{\left( {1 - p_{2} } \right)}} } \right],\left[ {0.027^{{p_{3} }} 0.037^{{\left( {1 - p_{3} } \right)}} } \right]} \right\rangle \\ \sigma_{5} & = \left\langle {\left[ {0.049^{{p_{1} }} 0.065^{{\left( {1 - p_{1} } \right)}} } \right],\left[ {0.103^{{p_{2} }} 0.148^{{\left( {1 - p_{2} } \right)}} } \right],\left[ {0.035^{{p_{3} }} 0.046^{{\left( {1 - p_{3} } \right)}} } \right]} \right\rangle \\ \end{aligned} $$

Appendix 3

$$ \begin{aligned} Pr_{1} & = \left\langle {\left[ {\left( { - 2.365} \right)^{{p_{1} }} 1.235^{{\left( {1 - p_{1} } \right)}} } \right],\left[ {\left( { - 1.483} \right)^{{p_{2} }} 1.443^{{\left( {1 - p_{2} } \right)}} } \right],\left[ {\left( { - 9.340} \right)^{{p_{3} }} 3.393^{{\left( {1 - p_{3} } \right)}} } \right]} \right\rangle \\ Pr_{2} & = \left\langle {\left[ {\left( { - 1.812} \right)^{{p_{1} }} 1.135^{{\left( {1 - p_{1} } \right)}} } \right],\left[ {\left( { - 1.130} \right)^{{p_{2} }} 1.524^{{\left( {1 - p_{2} } \right)}} } \right],\left[ {\left( { - 9.004} \right)^{{p_{3} }} 2.878^{{\left( {1 - p_{3} } \right)}} } \right]} \right\rangle \\ Pr_{3} & = \left\langle {\left[ {\left( { - 1.958} \right)^{{p_{1} }} 1.041^{{\left( {1 - p_{1} } \right)}} } \right],\left[ {\left( { - 1.490} \right)^{{p_{2} }} 1.438^{{\left( {1 - p_{2} } \right)}} } \right],\left[ {\left( { - 11.16} \right)^{{p_{3} }} 3.730^{{\left( {1 - p_{3} } \right)}} } \right]} \right\rangle \\ Pr_{4} & = \left\langle {\left[ {\left( { - 1.553} \right)^{{p_{1} }} 1.553^{{\left( {1 - p_{1} } \right)}} } \right],\left[ {\left( { - 1.332} \right)^{{p_{2} }} 1.322^{{\left( {1 - p_{2} } \right)}} } \right],\left[ {\left( { - 2.937} \right)^{{p_{3} }} 2.937^{{\left( {1 - p_{3} } \right)}} } \right]} \right\rangle \\ Pr_{5} & = \left\langle {\left[ {\left( { - 1.974} \right)^{{p_{1} }} 1.005^{{\left( {1 - p_{1} } \right)}} } \right],\left[ {\left( { - 1.423} \right)^{{p_{2} }} 2.010^{{\left( {1 - p_{2} } \right)}} } \right],\left[ {\left( { - 4.428} \right)^{{p_{3} }} 2.169^{{\left( {1 - p_{3} } \right)}} } \right]} \right\rangle \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, S.A.I., Mondal, S.P., Mandal, U.K. (2019). VIKOR Method for Decision Making Problems in Interval Valued Neutrosophic Environment. In: Kahraman, C., Otay, İ. (eds) Fuzzy Multi-criteria Decision-Making Using Neutrosophic Sets. Studies in Fuzziness and Soft Computing, vol 369. Springer, Cham. https://doi.org/10.1007/978-3-030-00045-5_22

Download citation

Publish with us

Policies and ethics