Skip to main content

Forming Tile Shapes with Simple Robots

  • Conference paper
  • First Online:
DNA Computing and Molecular Programming (DNA 2018)

Abstract

Motivated by the problem of manipulating nanoscale materials, we investigate the problem of reconfiguring a set of tiles into certain shapes by robots with limited computational capabilities. As a first step towards developing a general framework for these problems, we consider the problem of rearranging a connected set of hexagonal tiles by a single deterministic finite automaton. After investigating some limitations of a single-robot system, we show that a feasible approach to build a particular shape is to first rearrange the tiles into an intermediate structure by performing very simple tile movements. We introduce three types of such intermediate structures, each having certain advantages and disadvantages. Each of these structures can be built in asymptotically optimal \(O(n^2)\) rounds, where n is the number of tiles. As a proof of concept, we give an algorithm for reconfiguring a set of tiles into an equilateral triangle through one of the intermediate structures. Finally, we experimentally show that the algorithm for building the simplest of the three intermediate structures can be modified to be executed by multiple robots in a distributed manner, achieving an almost linear speedup in the case where the number of robots is reasonably small.

This work was begun at the Dagstuhl Seminar on Algorithmic Foundations of Programmable Matter, July 3–8, 2016. A preliminary version of this paper was presented at EuroCG 2017. This work is partly supported by DFG grant SCHE 1592/3-1. Fabian Kuhn is supported by ERC Grant 336495 (ACDC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonato, A., Nowakowski, R.J.: The game of cops and robbers on graphs. AMS (2011)

    Google Scholar 

  2. Chirikjian, G., Pamecha, A., Ebert-Uphoff, I.: Evaluating efficiency of self-reconfiguration in a class of modular robots. J. Robot. Syst. 13(5), 317–338 (1996)

    Article  Google Scholar 

  3. Das, S.: Mobile agents in distributed computing: network exploration. Bull. Eur. Assoc. Theor. Comput. Sci. 109, 54–69 (2013)

    MATH  Google Scholar 

  4. Demaine, E., Tachi, T.: Origamizer: a practical algorithm for folding any polyhedron. In: Proceedings of 33rd International Symposium on Computational Geometry (SoCG), pp. 34:1–34:16 (2017)

    Google Scholar 

  5. Demaine, E.D., Fekete, S.P., Scheffer, C., Schmidt, A.: New geometric algorithms for fully connected staged self-assembly. Theor. Comput. Sci. 671, 4–18 (2017)

    Article  MathSciNet  Google Scholar 

  6. Demaine, E., Demaine, M., Hoffmann, M., O’Rourke, J.: Pushing blocks is hard. Comput. Geom. 26(1), 21–36 (2003)

    Article  MathSciNet  Google Scholar 

  7. Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Universal shape formation for programmable matter. In: Proceedings of 28th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 289–299 (2016)

    Google Scholar 

  8. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching. Theor. Comput. Sci. 399(3), 236–245 (2008)

    Article  MathSciNet  Google Scholar 

  9. Hurtado, F., Molina, E., Ramaswami, S., Sacristán, V.: Distributed reconfiguraiton of 2D lattice-based modular robotic systems. Auton. Rob. 38(4), 383–413 (2015)

    Article  Google Scholar 

  10. Lund, K., et al.: Molecular robots guided by prescriptive landscapes. Nature 465(7295), 206–210 (2010)

    Article  Google Scholar 

  11. Michail, O., Spirakis, P.G.: Simple and efficient local codes for distributed stable network construction. Distrib. Comput. 29(3), 207–237 (2016)

    Article  MathSciNet  Google Scholar 

  12. Murata, S., Kurokawa, H., Kokaji, S.: Self-assembling machine. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp . 441–448 (1994)

    Google Scholar 

  13. Omabegho, T., Sha, R., Seeman, N.: A bipedal DNA Brownian motor with coordinated legs. Science 324(5923), 67–71 (2009)

    Article  Google Scholar 

  14. Patitz, M.J.: An introduction to tile-based self-assembly and a survey of recent results. Nat. Comput. 13(2), 195–224 (2014)

    Article  MathSciNet  Google Scholar 

  15. Pelc, A.: Deterministic rendezvous in networks: a comprehensive survey. Networks 59(3), 331–347 (2012)

    Article  MathSciNet  Google Scholar 

  16. Reif, J.H., Sahu, S.: Autonomous programmable DNA nanorobotic devices using DNAzymes. Theor. Comput. Sci. 410, 1428–1439 (2009)

    Article  MathSciNet  Google Scholar 

  17. Rothemund, P., Winfree, E.: The program-size complexity of self-assembled squares. In: Proceedings of 32nd Annual ACM Symposium on Theory of Computing (STOC), pp. 459–468 (2000)

    Google Scholar 

  18. Shin, J., Pierce, N.: A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. 126, 4903–4911 (2004)

    Google Scholar 

  19. Terada, Y., Murata, S.: Automatic modular assembly system and its distributed control. Int. J. Robot. Res. 27(3–4), 445–462 (2008)

    Article  Google Scholar 

  20. Thubagere, A.: A cargo-sorting DNA robot. Science 357(6356), eaan6558 (2017)

    Article  Google Scholar 

  21. Tomita, K., Murata, S., Kurokawa, H., Yoshida, E., Kokaji, S.: Self-assembly and self-repair method for a distributed mechanical system. IEEE Trans. Robot. Autom. 15(6), 1035–1045 (1999)

    Article  Google Scholar 

  22. Wang, Z., Elbaz, J., Willner, I.: A dynamically programmed DNA transporter. Angewandte Chemie Int. Ed. 51(48), 4322–4326 (2012)

    Article  Google Scholar 

  23. Wickham, S., Bath, J., Katsuda, Y., Endo, M., Hidaka, K., Sugiyama, H., Turberfield, A.: A DNA-based molecular motor that can navigate a network of tracks. Nat. Nanotechnol. 7(3), 169–173 (2012)

    Article  Google Scholar 

  24. Woods, D., Chen, H., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In: Proceedings of 4th Conference of Innovations in Theoretical Computer Science (ITCS), pp. 353–354 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Hinnenthal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gmyr, R. et al. (2018). Forming Tile Shapes with Simple Robots. In: Doty, D., Dietz, H. (eds) DNA Computing and Molecular Programming. DNA 2018. Lecture Notes in Computer Science(), vol 11145. Springer, Cham. https://doi.org/10.1007/978-3-030-00030-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00030-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00029-5

  • Online ISBN: 978-3-030-00030-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics