Skip to main content

Leveraging Network Theory and Stress Tests to Assess Interdependencies in Critical Infrastructures

  • Chapter
  • First Online:
Critical Infrastructure Security and Resilience

Abstract

Many modern critical infrastructures manifest reciprocal dependencies at various levels and on a time-evolving scale. Network theory has been exploited in the last decades to achieve a better understanding of topologies, correlations and propagation paths in case of perturbations. The discipline is providing interesting insights into aspects such as fragility and robustness of different network layouts against various types of threats, despite the difficulties arising in the modeling of the associated processes and entity relationships. Indeed, the evolution of infrastructures is not, in general, the straightforward outcome of a comprehensive a priori design. Rather, factors such as societal priorities, technical and budgetary constraints, critical events and the quest for better and cost-effective services induce a continuous change, while new kinds of interdependencies emerge. As a consequence, mapping emerging behavior can constitute a challenge and promote the development of innovative approaches to analysis and management. Among them, stress tests are entering the stage in order to assess networked infrastructures and reveal the associated operational boundaries and risk exposures. In this chapter, we first overview key developments of network science and its applications to primary infrastructure sectors. Secondly, we address the implementation of network-theoretical concepts in actions related to resilience enhancement, referring in particular to the case of stress tests in the banking sector. Finally, a discussion on the relevance of those concepts to critical infrastructure governance is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52004DC0702

  2. 2.

    Including:

  3. 3.

    https://cordis.europa.eu/project/rcn/110339_en.html

  4. 4.

    https://ec.europa.eu/energy/en/news/stress-tests-cooperation-key-coping-potential-gas-disruption

References

  1. Acemoglu D, Ozdaglar A, Tahbaz-Salehi A (2015) Systemic risk and stability in financial networks. Am Econ Rev 105(2):564–608

    Article  Google Scholar 

  2. Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47

    Article  MathSciNet  MATH  Google Scholar 

  3. Albert R, Jeong H, Barabási AL (1999) Internet: diameter of the world-wide web. Nature 401(6749):130

    Article  Google Scholar 

  4. Albert R, Jeong H, Barabási AL (2000) Error and attack tolerance of complex networks. Nature 406(6794):378–382

    Article  Google Scholar 

  5. Albert R, Albert I, Nakarado GL (2004) Structural vulnerability of the north american power grid. Phys Rev E 69(2):025103

    Article  Google Scholar 

  6. Aldasoro I, Alves I (2018) Multiplex interbank networks and systemic importance: an application to European data. J Financ Stab 35:17–37

    Article  Google Scholar 

  7. Allen F, Babus A (2009) Networks in finance. The network challenge: strategy, profit, and risk in an interlinked world, vol 367. Wharton School, Upper Saddle River

    Google Scholar 

  8. Amaral LAN, Scala A, Barthelemy M, Stanley HE (2000) Classes of small-world networks. Proc Natl Acad Sci 97(21):11149–11152

    Article  Google Scholar 

  9. Ancillotti E, Bruno R, Conti M (2013) The role of communication systems in smart grids: architectures, technical solutions and research challenges. Comput Commun 36(17–18):1665–1697

    Article  Google Scholar 

  10. Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  MathSciNet  MATH  Google Scholar 

  11. Bargigli L, Di Iasio G, Infante L, Lillo F, Pierobon F (2015) The multiplex structure of interbank networks. Quant Finan 15(4):673–691

    Article  MathSciNet  MATH  Google Scholar 

  12. Barrat A, Barthelemy M, Vespignani A (2007) The architecture of complex weighted networks: measurements and models. In: Caldarelli G, Vespignani A (eds) Large scale structure and dynamics of complex networks: from information technology to finance and natural science, pp 67–92. World Scientific, Singapore

    Chapter  Google Scholar 

  13. Barrat A, Barthelemy M, Vespignani A (2008) Dynamical processes on complex networks, vol 1. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  14. Barthélemy M (2011) Spatial networks. Phys Rep 499(1–3):1–101

    Article  MathSciNet  Google Scholar 

  15. Barthelemy M (2017) Morphogenesis of spatial networks. Springer, Cham

    MATH  Google Scholar 

  16. Battiston S, Puliga M, Kaushik R, Tasca P, Caldarelli G (2012) Debtrank: too central to fail? Financial networks, the fed and systemic risk. Sci Rep 2:541

    Article  Google Scholar 

  17. Battiston S, Caldarelli G, D’Errico M, Gurciullo S (2016) Leveraging the network: a stress-test framework based on debtrank. Stat Risk Model 33(3–4):117–138

    MathSciNet  MATH  Google Scholar 

  18. Battiston S, Farmer JD, Flache A, Garlaschelli D, Haldane AG, Heesterbeek H, Hommes C, Jaeger C, May R, Scheffer M (2016) Complexity theory and financial regulation. Science 351(6275):818–819

    Article  Google Scholar 

  19. Battiston S, Mandel A, Monasterolo I, Schütze F, Visentin G (2017) A climate stress-test of the financial system. Nat Clim Chang 7(4):283

    Article  Google Scholar 

  20. Bech ML, Atalay E (2010) The topology of the federal funds market. Physica A Stat Mech Appl 389(22):5223–5246

    Article  Google Scholar 

  21. Boccaletti S, Bianconi G, Criado R, Del Genio CI, Gómez-Gardenes J, Romance M, Sendina-Nadal I, Wang Z, Zanin M (2014) The structure and dynamics of multilayer networks. Phys Rep 544(1):1–122

    Article  MathSciNet  Google Scholar 

  22. Bollobás B (1998) Random graphs. In: Bollobás B (ed) Modern graph theory, pp 215–252. Springer, New York

    Chapter  MATH  Google Scholar 

  23. Bollobás B (1998) Modern graph theory, vol 184. Springer Verlag, New York

    MATH  Google Scholar 

  24. Bollobás BE, Riordan O, Spencer J, Tusnády G (2001) The degree sequence of a scale-free random graph process. Random Struct Algoritm 18(3):279–290

    Article  MathSciNet  MATH  Google Scholar 

  25. Borio C, Drehmann M, Tsatsaronis K (2014) Stress-testing macro stress testing: does it live up to expectations? J Financ Stab 12:3–15

    Article  Google Scholar 

  26. Boss M, Elsinger H, Summer M, Thurner 4 S (2004) Network topology of the interbank market. Quant Finan 4(6):677–684

    Article  Google Scholar 

  27. Brummitt CD, Kobayashi T (2015) Cascades in multiplex financial networks with debts of different seniority. Phys Rev E 91(6):062813

    Article  Google Scholar 

  28. Brummitt CD, D’Souza RM, Leicht EA (2012) Suppressing cascades of load in interdependent networks. Proc Natl Acad Sci 109(12):E680–E689

    Article  Google Scholar 

  29. Buldyrev SV, Parshani R, Paul G, Stanley HE, Havlin S (2010) Catastrophic cascade of failures in interdependent networks. Nature 464(7291):1025–1028

    Article  Google Scholar 

  30. Buzna L, Peters K, Helbing D (2006) Modelling the dynamics of disaster spreading in networks. Physica A Stat Mech Appl 363(1):132–140

    Article  Google Scholar 

  31. Buzna L, Peters K, Ammoser H, Kühnert C, Helbing D (2007) Efficient response to cascading disaster spreading. Phys Rev E 75(5):056107

    Article  Google Scholar 

  32. Carreras BA, Newman DE, Gradney P, Lynch VE, Dobson I (2007) Interdependent risk in interacting infrastructure systems. In: 40th Annual Hawaii International Conference on System Sciences (HICSS 2007), pp 112–112. IEEE, Los Alamitos

    Chapter  Google Scholar 

  33. Cimini G, Squartini T, Garlaschelli D, Gabrielli A (2015) Systemic risk analysis on reconstructed economic and financial networks. Sci Rep 5:15758

    Article  Google Scholar 

  34. Coxeter HSM, Ball WWR (1960) Mathematical recreations essays. Macmillan, New York

    Google Scholar 

  35. Crucitti P, Latora V, Marchiori M (2004) A topological analysis of the Italian electric power grid. Physica A Stat Mech Appl 338(1–2):92–97

    Article  Google Scholar 

  36. Davis EP (1999) Financial data needs for macroprudential surveillance–what are the key indicators of risks to domestic financial stability? Lecture Series 2. Centre for Central Banking Studies, Bank of England

    Google Scholar 

  37. De Domenico M, Solé-Ribalta A, Cozzo E, Kivelä M, Moreno Y, Porter MA, Gómez S, Arenas A (2013) Mathematical formulation of multilayer networks. Phys Rev X 3(4):041022

    Google Scholar 

  38. De Masi G, Iori G, Caldarelli G (2006) Fitness model for the Italian interbank money market. Phys Rev E 74(6):066112

    Article  Google Scholar 

  39. Del Vicario M, Bessi A, Zollo F, Petroni F, Scala A, Caldarelli G, Stanley HE, Quattrociocchi W (2016) The spreading of misinformation online. Proc Natl Acad Sci 113(3):554–559

    Article  Google Scholar 

  40. Delpini D, Battiston S, Riccaboni M, Gabbi G, Pammolli F, Caldarelli G (2013) Evolution of controllability in interbank networks. Sci Rep 3:1626

    Article  Google Scholar 

  41. Dong G, Gao J, Du R, Tian L, Stanley HE, Havlin S (2013) Robustness of network of networks under targeted attack. Phys Rev E 87(5):052804

    Article  Google Scholar 

  42. Dorogovtsev SN, Mendes JF (2013) Evolution of networks: from biological nets to the internet and WWW. Oxford University Press, Oxford

    MATH  Google Scholar 

  43. Erdös P, Rényi A (1959) On random graphs, I. Publicationes Mathematicae (Debrecen) 6:290–297

    MathSciNet  MATH  Google Scholar 

  44. Esposito S, Stojadinovic B, Babič A, Dolšek M, Iqbal S, Selva J, Giardini D (2017) Engineering risk-based methodology for stress testing of critical non-nuclear infrastructures (strest project). In: Proceedings of 16th World Conference on Earthquake, 16WCEE

    Google Scholar 

  45. Estrada E (2012) The structure of complex networks: theory and applications. Oxford University Press, New York

    MATH  Google Scholar 

  46. Faloutsos M, Faloutsos P, Faloutsos C (1999) On power-law relationships of the internet topology. In: ACM SIGCOMM Computer Communication Review, vol 29, pp 251–262. ACM

    Article  MATH  Google Scholar 

  47. Galbusera L, Giannopoulos G (2018) On input-output economic models in disaster impact assessment. Int J Disaster Risk Reduct 30:186–198

    Article  Google Scholar 

  48. Galbusera L, Ward D, Giannopoulos G (2014) Developing stress tests to improve the resilience of critical infrastructures: a feasibility analysis. Technical Report, JRC Science and Policy Reports JRC91129, European Commission

    Google Scholar 

  49. Galbusera L, Ward D, Giannopoulos G (2014) Stress tests and critical infrastructure protection-resilience. Technical Report, JRC Science and Policy Reports JRC93152, European Commission

    Google Scholar 

  50. Galbusera L, Theodoridis G, Giannopoulos G (2015) Intelligent energy systems: introducing power–ICT interdependency in modeling and control design. IEEE Trans Ind Electron 62(4):2468–2477

    Article  Google Scholar 

  51. Gao J, Buldyrev SV, Havlin S, Stanley HE (2011) Robustness of a network of networks. Phys Rev Lett 107(19):195701

    Article  Google Scholar 

  52. Gao J, Buldyrev SV, Stanley HE, Havlin S (2012) Networks formed from interdependent networks. Nat Phys 8(1):40

    Article  Google Scholar 

  53. Gilbert EN (1959) Random graphs. Ann Math Stat 30(4):1141–1144

    Article  MATH  Google Scholar 

  54. Giudicianni C, Di Nardo A, Di Natale M, Greco R, Santonastaso GF, Scala A (2018) Topological taxonomy of water distribution networks. Water 10(4):444

    Article  Google Scholar 

  55. Gudmundsson A, Mohajeri N (2013) Entropy and order in urban street networks. Sci Rep 3:3324

    Article  Google Scholar 

  56. Hałaj G, Kok C (2013) Assessing interbank contagion using simulated networks. Comput Manag Sci 10(2–3):157–186

    Article  MathSciNet  MATH  Google Scholar 

  57. Haldane AG, May RM (2011) Systemic risk in banking ecosystems. Nature 469(7330):351

    Article  Google Scholar 

  58. Helbing D (2012) Systemic risks in society and economics. In: Social self-organization, pp 261–284. Springer, Berlin/New York

    Chapter  Google Scholar 

  59. Helbing D (2013) Globally networked risks and how to respond. Nature 497(7447):51

    Article  Google Scholar 

  60. Iori G, De Masi G, Precup OV, Gabbi G, Caldarelli G (2008) A network analysis of the Italian overnight money market. J Econ Dyn Control 32(1):259–278

    Article  MATH  Google Scholar 

  61. Jia T, Qin K, Shan J (2014) An exploratory analysis on the evolution of the us airport network. Physica A Stat Mech Appl 413:266–279

    Article  Google Scholar 

  62. Jonkeren O, Azzini I, Galbusera L, Ntalampiras S, Giannopoulos G (2015) Analysis of critical infrastructure network failure in the European union: a combined systems engineering and economic model. Netw Spat Econ 15(2):253–270

    Article  MathSciNet  MATH  Google Scholar 

  63. Kaluza P, Kölzsch A, Gastner MT, Blasius B (2010) The complex network of global cargo ship movements. J R Soc Interface 7(48):1093–1103

    Article  Google Scholar 

  64. Kim JY, Goh KI (2013) Coevolution and correlated multiplexity in multiplex networks. Phys Rev Lett 111(5):058702

    Article  Google Scholar 

  65. Kinney R, Crucitti P, Albert R, Latora V (2005) Modeling cascading failures in the north American power grid. Eur Phys J B Condens Matter Complex Syst 46(1):101–107

    Article  Google Scholar 

  66. Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer networks. J Complex Netw 2(3):203–271

    Article  Google Scholar 

  67. Kok C, Montagna M (2016) Multi-layered interbank model for assessing systemic risk. Technical report, European Central Bank

    Google Scholar 

  68. Korkali M, Veneman JG, Tivnan BF, Bagrow JP, Hines PD (2017) Reducing cascading failure risk by increasing infrastructure network interdependence. Sci Rep 7:44499

    Article  Google Scholar 

  69. Kotzanikolaou P, Theoharidou M, Gritzalis D (2013) Assessing n-order dependencies between critical infrastructures. Int J Crit Infrastruct 9(1–2):93–110

    Article  Google Scholar 

  70. Kotzanikolaou P, Theoharidou M, Gritzalis D (2013) Cascading effects of common-cause failures in critical infrastructures. In: International Conference on Critical Infrastructure Protection, pp 171–182. Springer, Washington, DC

    Google Scholar 

  71. Kühnert C, Helbing D, West GB (2006) Scaling laws in urban supply networks. Physica A Stat Mech Appl 363(1):96–103

    Article  Google Scholar 

  72. Latora V, Marchiori M (2002) Is the Boston subway a small-world network? Physica A Stat Mech Appl 314(1–4):109–113

    Article  MATH  Google Scholar 

  73. Levy-Carciente S, Kenett DY, Avakian A, Stanley HE, Havlin S (2015) Dynamical macroprudential stress testing using network theory. J Bank Financ 59:164–181

    Article  Google Scholar 

  74. Li D, Zhang Q, Zio E, Havlin S, Kang R (2015) Network reliability analysis based on percolation theory. Reliab Eng Syst Saf 142:556–562

    Article  Google Scholar 

  75. Lin CT (1974) Structural controllability. IEEE Trans Autom Control 19(3):201–208

    Article  MathSciNet  MATH  Google Scholar 

  76. Lin Y, Patron A, Guo S, Kang R, Li D, Havlin S, Cohen R (2018) Design of survivable networks in the presence of aging. EPL (Europhysics Letters) 122(3):36003

    Article  Google Scholar 

  77. Liu YY, Barabási AL (2016) Control principles of complex systems. Rev Mod Phys 88(3):035006

    Article  Google Scholar 

  78. Liu YY, Slotine JJ, Barabási AL (2011) Controllability of complex networks. Nature 473(7346):167

    Article  Google Scholar 

  79. Liu YY, Slotine JJ, Barabási AL (2012) Control centrality and hierarchical structure in complex networks. PLoS One 7(9):e44459

    Article  Google Scholar 

  80. Louf R, Barthelemy M (2014) A typology of street patterns. J R Soc Interface 11(101):20140924

    Article  Google Scholar 

  81. Masucci AP, Stanilov K, Batty M (2013) Limited urban growth: London’s street network dynamics since the 18th century. PLoS One 8(8):e69469

    Article  Google Scholar 

  82. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827

    Article  Google Scholar 

  83. Morris RG, Barthelemy M (2013) Interdependent networks: the fragility of control. Sci Rep 3:2764

    Article  Google Scholar 

  84. Newman ME (2003) The structure and function of complex networks. SIAM Rev 45(2): 167–256

    Article  MathSciNet  MATH  Google Scholar 

  85. Newman M (2010) Networks: an introduction. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  86. Nicosia V, Bianconi G, Latora V, Barthelemy M (2013) Growing multiplex networks. Phys Rev Lett 111(5):058701

    Article  Google Scholar 

  87. Nicosia V, Bianconi G, Latora V, Barthelemy M (2014) Nonlinear growth and condensation in multiplex networks. Phys Rev E 90(4):042807

    Article  Google Scholar 

  88. Ouyang M (2014) Review on modeling and simulation of interdependent critical infrastructure systems. Reliab Eng Syst Saf 121:43–60

    Article  Google Scholar 

  89. Ouyang M, Fei Q, Yu MH, Wang GX, Luan EJ (2009) Effects of redundant systems on controlling the disaster spreading in networks. Simul Model Pract Theory 17(2):390–397

    Article  Google Scholar 

  90. Pagani GA, Aiello M (2013) The power grid as a complex network: a survey. Physica A Stat Mech Appl 392(11):2688–2700

    Article  MathSciNet  MATH  Google Scholar 

  91. Parandehgheibi M, Modiano E (2013) Robustness of interdependent networks: the case of communication networks and the power grid. In: Global Communications Conference (GLOBECOM). IEEE, Piscataway, pp 2164–2169

    Google Scholar 

  92. Pastor-Satorras R, Vespignani A (2007) Evolution and structure of the internet: a statistical physics approach. Cambridge University Press, Cambridge

    Google Scholar 

  93. Pederson P, Dudenhoeffer D, Hartley S, Permann M (2006) Critical infrastructure interdependency modeling: a survey of us and international research. Idaho National Laboratory, pp 1–20

    Google Scholar 

  94. Petrone D, Latora V (2018) A dynamic approach merging network theory and credit risk techniques to assess systemic risk in financial networks. Sci Rep 8(1):5561

    Article  Google Scholar 

  95. Poledna S, Molina-Borboa JL, Martínez-Jaramillo S, Van Der Leij M, Thurner S (2015) The multi-layer network nature of systemic risk and its implications for the costs of financial crises. J Financ Stab 20:70–81

    Article  Google Scholar 

  96. Pósfai M, Gao J, Cornelius SP, Barabási AL, D’Souza RM (2016) Controllability of multiplex, multi-time-scale networks. Phys Rev E 94(3):032316

    Article  Google Scholar 

  97. Pu CL, Pei WJ, Michaelson A (2012) Robustness analysis of network controllability. Physica A Stat Mech Appl 391(18):4420–4425

    Article  Google Scholar 

  98. Quagliariello M (2009) Stress-testing the banking system: methodologies and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  99. Rinaldi SM, Peerenboom JP, Kelly TK (2001) Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Syst 21(6):11–25

    Article  Google Scholar 

  100. Rosato V, Bologna S, Tiriticco F (2007) Topological properties of high-voltage electrical transmission networks. Electr Power Syst Res 77(2):99–105

    Article  Google Scholar 

  101. Rosato V, Issacharoff L, Tiriticco F, Meloni S, Porcellinis S, Setola R (2008) Modelling interdependent infrastructures using interacting dynamical models. Int J Crit Infrastruct 4(1–2):63–79

    Article  Google Scholar 

  102. Rosato V, Meloni S, Simonsen I, Issacharoff L, Peters K, Von Festenberg N, Helbing D (2008) A complex system’s view of critical infrastructures. In: Helbing D (ed) Managing complexity: insights, concepts, applications, pp 241–260. Springer, Berlin

    Chapter  Google Scholar 

  103. Roukny T, Georg CP, Battiston S (2014) A network analysis of the evolution of the German interbank market. Technical report, Discussion Paper, Deutsche Bundesbank

    Google Scholar 

  104. Samaniego H, Moses ME (2008) Cities as organisms: allometric scaling of urban road networks. J Transp Land Use 1(1):21–39

    Google Scholar 

  105. Santoro A, Latora V, Nicosia G, Nicosia V (2017) Pareto optimality in multilayer network growth. arXiv preprint: 1710.01068

    Google Scholar 

  106. Satumtira G, Dueñas-Osorio L (2010) Synthesis of modeling and simulation methods on critical infrastructure interdependencies research. In: Sustainable and resilient critical infrastructure systems, pp 1–51. Springer, Berlin/Heidelberg

    Google Scholar 

  107. Scellato S, Cardillo A, Latora V, Porta S (2006) The backbone of a city. Eur Phys J B Condens Matter Complex Syst 50(1–2):221–225

    Article  Google Scholar 

  108. Silva W, Kimura H, Sobreiro VA (2017) An analysis of the literature on systemic financial risk: a survey. J Financ Stab 28:91–114

    Article  Google Scholar 

  109. Son SW, Bizhani G, Christensen C, Grassberger P, Paczuski M (2012) Percolation theory on interdependent networks based on epidemic spreading. EPL (Europhysics Letters) 97(1):16006

    Article  Google Scholar 

  110. Soramäki K, Bech ML, Arnold J, Glass RJ, Beyeler WE (2007) The topology of interbank payment flows. Physica A Stat Mech Appl 379(1):317–333

    Article  Google Scholar 

  111. Stergiopoulos G, Kotzanikolaou P, Theocharidou M, Gritzalis D (2015) Risk mitigation strategies for critical infrastructures based on graph centrality analysis. Int J Crit Infrastruct Prot 10:34–44

    Article  Google Scholar 

  112. Strano E, Nicosia V, Latora V, Porta S, Barthélemy M (2012) Elementary processes governing the evolution of road networks. Sci Rep 2:296

    Article  Google Scholar 

  113. Strano E, Viana M, da Fontoura Costa L, Cardillo A, Porta S, Latora, V (2013) Urban street networks, a comparative analysis of ten European cities. Environ Plann B Plann Des 40(6):1071–1086

    Article  Google Scholar 

  114. Svendsen NK, Wolthusen SD (2007) Connectivity models of interdependency in mixed-type critical infrastructure networks. Inf Secur Tech Rep 12(1):44–55

    Article  Google Scholar 

  115. Theodoridis G, Galbusera L, Giannopoulos G (2015) Controllability assessment for cascade effects in ICT-enabled power grids. In: International Conference on Critical Information Infrastructures Security, pp 147–158. Springer, Berlin

    Google Scholar 

  116. Toroczkai Z, Vespignani A (2016) Understanding the fundamental principles underlying the survival and efficient recovery of multi-scale techno-social networks following a WMD event (a). Technical report, University of Notre Dame Du Lac Notre Dame United States

    Book  Google Scholar 

  117. Upper C, Worms A (2004) Estimating bilateral exposures in the German interbank market: is there a danger of contagion? Eur Econ Rev 48(4):827–849

    Article  Google Scholar 

  118. Čihák M (2004) Stress testing: a review of key concepts. Research and Policy Notes 2004/02, Czech National Bank, Research Department. http://ideas.repec.org/p/cnb/rpnrpn/2004-02.html

  119. Vespignani A (2010) Complex networks: the fragility of interdependency. Nature 464(7291):984–985

    Article  Google Scholar 

  120. Vespignani A (2012) Modelling dynamical processes in complex socio-technical systems. Nat Phys 8(1):32

    Article  Google Scholar 

  121. Vespignani A (2018) Twenty years of network science. Nature 558:528–529

    Article  Google Scholar 

  122. Wandelt S, Sun X, Zhang J (2017) Evolution of domestic airport networks: a review and comparative analysis. Transportmetrica B Trans Dyn 13:1–17

    Google Scholar 

  123. Wang Z, Szolnoki A, Perc M (2014) Self-organization towards optimally interdependent networks by means of co evolution. New J Phys 16(3):033041

    Article  Google Scholar 

  124. Wang Z, Wang L, Szolnoki A, Perc M (2015) Evolutionary games on multilayer networks: a colloquium. Eur Phys J B 88(5):124

    Article  Google Scholar 

  125. Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393:440–442

    Article  MATH  Google Scholar 

  126. West DB et al (2001) Introduction to graph theory, vol 2. Prentice Hall, Upper Saddle River

    Google Scholar 

  127. Yazdani A, Jeffrey P (2011) Complex network analysis of water distribution systems. Chaos Interdisciplinary J Nonlinear Sci 21(1):016111

    Article  Google Scholar 

  128. Zhang Y, Wang L, Sun W, Green II RC, Alam M (2011) Distributed intrusion detection system in a multi-layer network architecture of smart grids. IEEE Trans Smart Grid 2(4):796–808

    Article  Google Scholar 

  129. Zio E, Sansavini G (2011) Modeling interdependent network systems for identifying cascade-safe operating margins. IEEE Trans Reliab 60(1):94–101

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Giannopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Galbusera, L., Giannopoulos, G. (2019). Leveraging Network Theory and Stress Tests to Assess Interdependencies in Critical Infrastructures. In: Gritzalis, D., Theocharidou, M., Stergiopoulos, G. (eds) Critical Infrastructure Security and Resilience. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-00024-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00024-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00023-3

  • Online ISBN: 978-3-030-00024-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics