Skip to main content

Identifying Influential Spreaders by Temporal Efficiency Centrality in Temporal Network

  • Conference paper
  • First Online:
  • 2206 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11067))

Abstract

Identifying influential spreaders is an important issue for capturing the dynamics of information diffusion in temporal networks. Most of the identification of influential spreaders in previous researches were focused on analysing static networks, rarely highlighted on dynamics. However, those measures which are proposed for static topologies only, unable to faithfully capture the effect of temporal variations on the importance of nodes. In this paper, a shortest temporal path algorithm is proposed for calculating the minimum time that information interaction between nodes. This algorithm can effectively find out the shortest temporal path when considering the network integrity. On the basis of this, the temporal efficiency centrality (TEC) algorithm in temporal networks is proposed, which identify influential nodes by removing each node and taking the variation of the whole network into consideration at the same time. To evaluate the effectiveness of this algorithm, we conduct the experiment on four real-world temporal networks for Susceptible-Infected-Recovered (SIR) model. By employing the imprecision and the Kendall’s au coefficient, The results show that this algorithm can effectively evaluate the importance of nodes in temporal networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boccaletti, S., et al.: The structure and dynamics of multilayer networks. Phys. Rep. 544(1), 1–122 (2014)

    Google Scholar 

  2. Boyer, J.: The fibonacci heap (1997)

    Google Scholar 

  3. Castellano, C., Pastorsatorras, R.: Thresholds for epidemic spreading in networks. Phys. Rev. Lett. 105(21), 218701 (2010)

    Article  Google Scholar 

  4. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  5. Eckmann, J.P., Moses, E., Sergi, D.: Entropy of dialogues creates coherent structures in e-mail traffic. Proc. Natl. Acad. Sci. USA 101(40), 14333–14337 (2004)

    Article  MathSciNet  Google Scholar 

  6. Ferreira, A.: Building a reference combinatorial model for MANETs. IEEE Netw. 18(5), 24–29 (2004)

    Article  MathSciNet  Google Scholar 

  7. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1977)

    Article  Google Scholar 

  8. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1978)

    Article  Google Scholar 

  9. Freeman, L.C.: Generality in social networks: conceptual clarification. Soc. Netw. 1, 215–239 (1979)

    Article  Google Scholar 

  10. Holme, P.: Modern temporal network theory: a colloquium. Eur. Phys. J. B 88(9), 1–30 (2015)

    Article  Google Scholar 

  11. Holme, P., Saramki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2011)

    Article  Google Scholar 

  12. Huang, D.W., Zu Guo, Y.: Dynamic-sensitive centrality of nodes in temporal networks. Sci. Rep. 7, 41454 (2017)

    Article  Google Scholar 

  13. Huang, Q., Zhao, C., Zhang, X., Yi, D.: Locating the source of spreading in temporal networks. Phys. A Stat. Mech. Appl. 468, 434–444 (2016)

    Article  Google Scholar 

  14. Ingerman, P.Z.: Algorithm 141: path matrix. Commun. ACM 5(11), 556–556 (1962)

    Article  Google Scholar 

  15. Iribarren, J.L., Moro, E.: Impact of human activity patterns on the dynamics of information diffusion. Phys. Rev. Lett. 103(3), 038702 (2009)

    Article  Google Scholar 

  16. Isella, L., Stehl, J., Barrat, A., Cattuto, C., Pinton, J.F., Van den Broeck, W.: What’s in a crowd? Analysis of face-to-face behavioral networks. J. Theor. Biol. 271(1), 166–80 (2011)

    Article  MathSciNet  Google Scholar 

  17. Jeong, H., Mason, S.P., Barabasi, A.L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411(6833), 41–42 (2001)

    Article  Google Scholar 

  18. Jordn, F., Okey, T.A., Bauer, B., Libralato, S.: Identifying important species: linking structure and function in ecological networks. Ecol. Model. 216(1), 75–80 (2008)

    Article  Google Scholar 

  19. Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for temporal networks. In: ACM Symposium on Theory of Computing, pp. 504–513 (2000)

    Google Scholar 

  20. Kim, H., Anderson, R.: Temporal node centrality in complex networks. Phys. Rev. E 85(2 Pt 2), 026107 (2012)

    Article  Google Scholar 

  21. Kitsak, M., et al.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)

    Article  Google Scholar 

  22. Klemm, K., Serrano, M., Eguluz, V.M., Miguel, M.S.: A measure of individual role in collective dynamics. Sc. Rep. 2(2), 292 (2012)

    Article  Google Scholar 

  23. Knight, W.R.: A computer method for calculating kendall’s tau with ungrouped data. J. Am. Stat. Assoc. 61(314), 436–439 (1966)

    Article  Google Scholar 

  24. Lahiri, M., Berger-Wolf, T.Y.: Mining periodic behavior in dynamic social networks. In: Eighth IEEE International Conference on Data Mining, pp. 373–382 (2009)

    Google Scholar 

  25. Liu, Y., Tang, M., Zhou, T., Do, Y.: Core-like groups result in invalidation of identifying super-spreader by k-shell decomposition. Sci. Rep. 5, 9602 (2014)

    Article  Google Scholar 

  26. Michalski, R., Palus, S., Kazienko, P.: Matching organizational structure and social network extracted from email communication. In: Abramowicz, W. (ed.) BIS 2011. LNBIP, vol. 87, pp. 197–206. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21863-7_17

    Chapter  Google Scholar 

  27. Eagle, N., Pentland, A.: Reality mining: sensing complex social systems. J. Pers. Ubiquit. Comput. 10, 255–268 (2005)

    Article  Google Scholar 

  28. Newman, M.E.: Spread of epidemic disease on networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 66(1 Pt 2), 016128 (2002)

    Article  MathSciNet  Google Scholar 

  29. Ogura, M., Preciado, V.M.: Katz centrality of Markovian temporal networks: analysis and optimization. In: American Control Conference (2017)

    Google Scholar 

  30. Ozgr, A., Vu, T., Erkan, G., Radev, D.R.: Identifying gene-disease associations using centrality on a literature mined gene-interaction network. Bioinformatics 24(13), i277 (2008)

    Article  Google Scholar 

  31. Pan, R.K., Saramki, J.: Path lengths, correlations, and centrality in temporal networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 84(2), 1577–1589 (2011)

    Google Scholar 

  32. Perra, N., Gonalves, B., Pastorsatorras, R., Vespignani, A.: Activity driven modeling of time varying networks. Sci. Rep. 2(6), 469 (2012)

    Article  Google Scholar 

  33. Rocha, L.E.C., Masuda, N.: Random walk centrality for temporal networks. New J. Phys. 16(6) (2014)

    Article  MathSciNet  Google Scholar 

  34. Sabidussi, G.: The centrality index of a graph. Psychometrika 31(4), 581–603 (1966)

    Article  MathSciNet  Google Scholar 

  35. Takaguchi, T., Sato, N., Yano, K., Masuda, N.: Importance of individual events in temporal networks. New J. Phys. 14(9), 2750–2753 (2012)

    Article  Google Scholar 

  36. Tang, J., Scellato, S., Musolesi, M., Mascolo, C., Latora, V.: Small-world behavior in time-varying graphs. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 81(2), 055101 (2010)

    Article  Google Scholar 

  37. Tang, J., Musolesi, M., Mascolo, C., Latora, V., Nicosia, V.: Analysing information flows and key mediators through temporal centrality metrics. In: The Workshop on Social Network Systems, p. 3 (2010)

    Google Scholar 

  38. Taylor, D., Myers, S.A., Clauset, A., Porter, M.A., Mucha, P.J.: Eigenvector-based centrality measures for temporal networks. Physics (2015)

    Google Scholar 

  39. Vazquez, A., Racz, B., Barabsi, A.L.: Impact of non-Poissonian activity patterns on spreading processes. Phys. Rev. Lett. 98(15), 158702 (2007)

    Article  Google Scholar 

  40. Wang, S., Du, Y., Deng, Y.: A new measure of identifying influential nodes: Efficiency centrality. Commun. Nonlinear Sci. Numer. Simul. 47, 151–163 (2017)

    Article  MathSciNet  Google Scholar 

  41. Zhong, L., Gao, C., Zhang, Z., Shi, N., Huang, J.: A multiple attributes fusion method. In: Identifying Influential Nodes in Complex Networks (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 61571143, No. 61261017and No. 61561014); Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education (No. CRKL150112); Guangxi Cooperative Innovation Center of cloud computing and Big Data (No. YD1716); Guangxi Colleges and Universities Key Laboratory of cloud computing and complex systems; Guangxi Key Laboratory of Cryptography and Information Security (No. GCIS201613, No. GCIS201612).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xue, K., Wang, J. (2018). Identifying Influential Spreaders by Temporal Efficiency Centrality in Temporal Network. In: Sun, X., Pan, Z., Bertino, E. (eds) Cloud Computing and Security. ICCCS 2018. Lecture Notes in Computer Science(), vol 11067. Springer, Cham. https://doi.org/10.1007/978-3-030-00018-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00018-9_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00017-2

  • Online ISBN: 978-3-030-00018-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics