Skip to main content

Image Encryption and Compression Based on a VAE Generative Model

  • Conference paper
  • First Online:
Cloud Computing and Security (ICCCS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11065))

Included in the following conference series:

  • 2475 Accesses

Abstract

To solve the problem that the network security real-time transmits image, a new image encryption and compression method based on a variational auto-encoder (VAE) generative model is proposed in this paper. The algorithm aims to encrypt and compress images by using a variational auto-encoder generative model. Firstly, we use multi-layer perceptual neural network to train the VAE model, and set parameters of the model to get the best model. Then, the peak signal-to-noise ratio (PSNR) and mean square error (MSE) are used to measure the compression effect and Set the number of iterations of the model. Finally, we extract the data of based on a variational auto-encoder and perform division, then the data input the VAE generative model to encrypt image and analyze encryption images. In this paper, we use the standard image of 256 * 256 to do simulation experiments and use histogram and image correlation to analyze the results of encryption. The simulation results show that the proposed method can effectively compress and encrypt images, and then obtain better compression image than stacked auto-encoder (SAE), while the algorithm is faster and easier encrypting and decrypting images and the decrypted image distortion rate is low and suitable for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gersho, A., Gray, R.M.: Vector quantization i: structure and performance. In: Gersho, A., Gray, R.M. (eds.) Vector Quantization and Signal Compression, vol. 159, pp. 309–343. Springer, Boston (1992). https://doi.org/10.1007/978-1-4615-3626-0_10

    Chapter  MATH  Google Scholar 

  2. Gregor, K., Besse, F., Rezende, D.J., Danihelka, I., Wierstra, D.: Towards conceptual compression. In: Advances in Neural Information Processing Systems, pp. 3549–3557(2016)

    Google Scholar 

  3. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  4. Theis, L., Shi, W., Cunningham, A., Huszar, F.: Lossy image compression with compressive autoencoders. In: International Conference on Learning Representations (2017)

    Google Scholar 

  5. Hu, F., Pu, C.: An image compression and encryption scheme based on deep learning. arXiv:1608.05001 (2016)

  6. Ballé, J., Laparra, V., Simoncelli, E.P.: End-to-end optimized image compression. arXiv preprint arXiv:1611.01704 (2016)

  7. Zhang, Y., Qin, C., Zhang, W.M., Liu, F.L., Luo, X.Y.: On the fault-tolerant performance for a class of robust image steganography. Sig. Process. 146, 99–111 (2018)

    Article  Google Scholar 

  8. Qin, C., Zhang, X.: Effective reversible data hiding in encrypted image with privacy protection for image content. J. Vis. Commun. Image Represent. 31, 154–164 (2015)

    Article  Google Scholar 

  9. Fan, J., Wang, J., Sun, X., Li, T.: Partial encryption of color image using quaternion discrete cosine transform. Int. J. Sig. Process. Image Process. Pattern Recognit. 8, 171–190 (2015)

    Google Scholar 

  10. Ahmad, J., Khan, M.: A compression sensing and noise-tolerant image encryption scheme based on chaotic maps and orthogonal matrices. Neural Comput. Appl. (2016)

    Google Scholar 

  11. Fridrich, J.: Symmetric ciphers based on two-dimensional chaotic maps. Int. J. Bifurcat. Chaos. 8, 1259–1284 (1998)

    Article  MathSciNet  Google Scholar 

  12. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  13. Doersch, C.: Tutorial on Variational Autoencoders. arXiv preprint. arXiv:1606.05908 (2016)

  14. Kingma, D.P., Mohamed, S., Rezende, D.J., Welling, M.: Semisupervised learning with deep generative models. In: Advances in Neural Information Processing Systems, pp. 3581–3589 (2014)

    Google Scholar 

  15. Lamb, A., Dumoulin, V., Courville, A.: Discriminative regularization for generative models. arXiv preprint arXiv:1602.03220 (2016)

  16. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: ICML (2014)

    Google Scholar 

  17. Kulkarni, T.D., Whitney, W.F., Kohli, P., Tenenbaum, J.: Deep convolutional inverse graphics network. In: NIPS (2015)

    Google Scholar 

  18. Salimans, T., Kingma, D., Welling, M.: Markov chain monte carlo and variational inference: bridging the gap. In: ICML (2015)

    Google Scholar 

  19. Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D., Draw: a recurrent neural network for image generation. In: ICCV (2015)

    Google Scholar 

  20. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: NIPS (2015)

    Google Scholar 

  21. Gonzalo, L., Giraldo, S.: Revisiting denoising auto-encores. In: International Conference on Learning Representations (2017)

    Google Scholar 

  22. Kan, M., Shan, S., Chang, H., Chen, X.: Stacked progressive auto-encoders (SPAE) for face recognition across poses. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1883–1890 (2014)

    Google Scholar 

  23. Tiwari, M., Gupta, B.: Image denoising using spatial gradient based bilateral filter and minimum mean square error filtering. Procedia Comput. Sci. 54, 638–645 (2015)

    Article  Google Scholar 

  24. Karamchandani, S.H., Gandhi, K.J., Gosalia, S.R., Madan, V.K., Merchant, S.N., Desai, U.B.: PCA encrypted short acoustic data inculcated in digital color images. Int. J. Comput. Commun. Control 10(5), 678–685 (2015)

    Article  Google Scholar 

  25. Horé, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: International Conference on Pattern Recognition, pp. 2366–2369 (2010)

    Google Scholar 

Download references

Acknowledgment

This paper was supported by the National Natural Science Foundation of China (No. U1204606, No. U1604156), the Key Programs for Science and Technology Development of Henan Province (No. 172102210335, No. 172102210045), Key Scientific Research Projects in Henan Universities (No. 16A520058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xintao Duan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duan, X., Liu, J., Zhang, E., Song, H., Jia, K. (2018). Image Encryption and Compression Based on a VAE Generative Model. In: Sun, X., Pan, Z., Bertino, E. (eds) Cloud Computing and Security. ICCCS 2018. Lecture Notes in Computer Science(), vol 11065. Springer, Cham. https://doi.org/10.1007/978-3-030-00012-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00012-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00011-0

  • Online ISBN: 978-3-030-00012-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics