Skip to main content

Cancer Drugs and Cancer Drug Development for the New Millennium

  • Chapter
Progress in Anti-Cancer Chemotherapy

Part of the book series: Progress in Anti-Cancer Chemotherapy ((ANTI-CANCER,volume 4))

Abstract

Most chemotherapeutic agents used today were identified by empirically screening natural products or synthetic compounds for cytotoxic potency in vitro against murine and/or human cancer cell lines and in vivo against rodent tumor models. [1] The majority of these agents directly target DNA by inhibiting its synthesis or function. As a result, these drugs are cytotoxic with limited specificity for cancer cells compared to normal cells. This empirical approach arose from our incomplete understanding of tumor biology and from our inability to identify molecular targets specific for malignant cells. In fact, mechanisms of activity often were identified only after agents were shown to have significant anti-tumor activity. Then structure-activity relationships and molecular targets were characterized, and this information was utilized to develop analogues with more desirable pharmacological and therapeutic properties. [2] The inability of this empirical process to identify drugs which cure most common malignancies, coupled with our growing understanding of cancer biology has led to the implementation of a more target-directed and rational approach to drug design and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boral AL Dessain S & Chabner BA (1998) Clinical evaluation of biologically targeted drugs: obstacles and opportunities. Cancer Chemother Pharmacol 42, S3–21

    Article  PubMed  CAS  Google Scholar 

  2. Chabner BA, Boral AL & Multani P (1998) Translational research: walking the bridge between idea and cure— seventeenth Bruce F. Cain Memorial Award lecture. Cancer Res 58, 4211–6

    CAS  Google Scholar 

  3. Kerr DJ (1994) Phase I clinical trials: adapting methodology to face new challenges. Ann Oncol 5, 67–70

    Article  PubMed  Google Scholar 

  4. Hunter T (1993) Braking the cycle. Cell 75, 839–41

    Article  PubMed  CAS  Google Scholar 

  5. Courtneidge SA & Plowman GD (1998) The discovery and validation of new drug targets in cancer/. Curr Opin Biotechnol 9, 632–6

    Article  PubMed  CAS  Google Scholar 

  6. Grunicke HH (1998) Molecular basis of targeted chemotherapy: novel concepts with spe cial reference to the treatment of Hodgkin’s disease. Ann Oncol 9 SI25–8

    Google Scholar 

  7. Gelmon KA, Eisenhauer EA, Harris AL, Ratain MJ & Workman P (1999) Anticancer Agents Targeting Signaling Molecules and Cancer Cell Environment: Challenges for Drug Development? J Natl Cancer Inst 91, 1281–1287

    Article  PubMed  CAS  Google Scholar 

  8. Duronio V, Scheid MP & Ettinger S (1998) Downstream signaling events regulated by phosphatidylinositol 3-kinase activity. Cell Signal 10, 233–9

    Article  PubMed  CAS  Google Scholar 

  9. Cantrell D (1996) T cell antigen receptor signal transduction pathways. Annu Rev Immunol 14, 259–74

    Article  PubMed  CAS  Google Scholar 

  10. Pawson, T. & Saxton, T. M. (1999) Signaling networks-do all roads lead to the same genes?. Cell 97, 675–8.

    Article  PubMed  CAS  Google Scholar 

  11. Cole K & Kohn E (1994) Calcium-mediated signal transduction: biology, biochemistry, and therapy. Cancer Metastasis Rev 13, 31–44

    Article  PubMed  CAS  Google Scholar 

  12. Christen RD, Isonishi S, Jones JA, Jekunen AP, Horn DK, Kroning R, Gately DP, Thiebaut FB, Los G & Howell SB (1994) Signaling and drug sensitivity. Cancer Metastasis Rev 13, 175–89

    Article  PubMed  CAS  Google Scholar 

  13. Haimovitz-Friedman A (1998) Radiation-induced signal transduction and stress response. RadiatRes 150, SI02–8

    Google Scholar 

  14. Baselga J, Tripathy D, Mendelsohn J, Baughman S, Benz CC, Dantis L, Sklarin NT, Seidman AD, Hudis CA, Moore J, Rosen PP, Twaddell T, Henderson 1С & Norton L (1999) Phase II study of weekly intravenous trastuzumab (Herceptin) in patients with HER2/neu-overexpressing metastatic breast cancer. Semin Oncol 26, 78–83

    Google Scholar 

  15. Norton L, Slamon D, Leyland-Jones B, Wolter J, Fleming T, Eirmann W, Baselga J, Mendelsohn J, Bajamonde A, Ash M & Shak S (1999) Overall Survival (OS) Advantage to Simultaneous Chemotherapy (CRx) Plus the Humanized Anti-HER2 Monoclonal Antibody Herceptin (H) in HER2-Overexpressing (HER2+) Metastatic Breast Cancer (MBC). Proc Am Soc Clin Oncol 18, Abstract 483

    Google Scholar 

  16. Slamon D, Leyland-Jones B, Shak S, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Baseiga J & Norton L (1998) Addition of Herceptin™ (humanized anti-her2 anti body) to first line chemotherapy for her2 overexpressing metastatic breast cancer (her2+/mbc) markedly increase anticancer activity: a randomized, multinational control led phase iii trial. Proc Am Soc Clin Oncol 17, Abstract 377

    Google Scholar 

  17. Woodburn JR (1999) The epidermal growth factor receptor and its inhibition in cancer the rapy. Pharmacol Ther 82, 241–50

    Article  PubMed  CAS  Google Scholar 

  18. Belhoussine R, Morjani H, Palissot V, Gillet R, Trussardi A, Belloc F, Dufer J & Manfait M (1999) Down-regulation of bcl-xL expression and recovery of apoptosis in multidrug-resis-tant HL60 cells when bcr-abl product is inhibited with the tyrosine kinase inhibitor CGP57148. Proc. Amer. Assoc. Cancer Res. 40, Abstract 1113

    Google Scholar 

  19. Grunicke HH & Maly K (1993) Role of GTPases and GTPase regulatory proteins in onco genesis. Crit Rev Oncog 4, 389–402

    PubMed  CAS  Google Scholar 

  20. Magee T & Marshall C (1999) New insights into the interaction of Ras with the plasma membrane. Cell 98, 9–12

    Article  PubMed  CAS  Google Scholar 

  21. Lopez-Ilasaca M, Crespo P, Pellici PG, Gutkind JS & Wetzker R (1997) Linkage of G pro tein-coupled receptors to the МАРK signaling pathway through PI 3-kinase gamma. Science 275, 394–7

    Article  PubMed  CAS  Google Scholar 

  22. Zachos G & Spandidos DA (1997) Expression of ras proto-oncogenes: regulation and impli cations in the development of human tumors. Crit Rev Oncol Hematol 26, 65–75

    Article  PubMed  CAS  Google Scholar 

  23. Spiegel AM (1996) Mutations in G proteins and G protein-coupled receptors in endocrine disease. J Clin Endocrinol Metab 81, 2434–42

    Article  PubMed  CAS  Google Scholar 

  24. Zhang FL & Casey PJ (1996) Protein prenylation: molecular mechanisms and functional consequences/. Annu Rev Biochem 65, 241–69

    Article  PubMed  CAS  Google Scholar 

  25. Lobell RB & Kohl NE (1998) Pre-clinical development of farnesyltransferase inhibitors. Cancer Metastasis Rev 17, 203–10

    Article  PubMed  CAS  Google Scholar 

  26. Nagasu T, Yoshimatsu K, Rowell C, Lewis MD & Garcia AM (1995) Inhibition of human tumor xenograft growth by treatment with the farnesyl transferase inhibitor B956. Cancer Res 55, 5310–4

    PubMed  CAS  Google Scholar 

  27. Du W, Lebowitz PF & Prendergast GC (1999) Cell growth inhibition by farnesyltransfera se inhibitors is mediated by gain of geranylgeranylated RhoB. Mol Cell Biol 19, 1831–40

    PubMed  CAS  Google Scholar 

  28. Lebowitz PF & Prendergast GC (1998) Non-Ras targets of farnesyltransferase inhibitors: focus on Rho. Oncogene 17, 1439–45

    Article  PubMed  CAS  Google Scholar 

  29. Hudes GR, Schol J, Baab J, Rogatko A, Bol C, Horak I, Langer C, Goldstein LJ, Szarka C, Meropol NJ & Weiner L (1999) Phase I Clinical and Pharmacokinetic Trial of the Farnesyltransferase Inhibitor Rl 15777 on a 21-Day Dosing Schedule./. Proc Am Soc Clin Oncol 18, 156a Abstract 601

    Google Scholar 

  30. Zujewski J, Horak ID, Bol CJ, Woestenborghs R, End D, Chiao J, Belly RT, Kohler D, Chow, C, Noone M, Hakim FT, Larkin G, Gress RE, Nussenblatt RB, Kremer AB & Cowan KH (1999) A Phase I and Pharmacokinetic Study of Farnesyltransferase Inhibitor, Rl 15777, in Advanced Cancer. Proc Am Soc Clin Oncol 18, 192a, Abstract 739

    Google Scholar 

  31. Morgan DO (1995) Principles of CDK regulation. Nature 374, 131–134

    Article  PubMed  CAS  Google Scholar 

  32. Roussel MF (1998) Key effectors of signal transduction and Gl progression. Adv Cancer Res 74, 1–24

    Article  PubMed  CAS  Google Scholar 

  33. Patel V, Senderowicz AM, Pinto D Jr, Igishi T, Raffeid M, Quintanilla-Martinez L, Ens-ley J F, Sausville EA & Gutkind JS (1998) Flavopiridol, a novel cyclin-dependent kinase inhibitor, suppresses the growth of head and neck squamous cell carcinomas by inducing apoptosis/. J Clin Invest 102, 1674–81

    Article  PubMed  CAS  Google Scholar 

  34. Kaur G, Stetler-Stevenson M, Sebers S, Worland P, Sedlacek H, Myers C, Czech J, Naik R & Sausville E (1992) Growth inhibition with reversible cell cycle arrest of carcinoma cells by flavone L86–8275. J Natl Cancer Inst 84, 1736–40

    Article  PubMed  CAS  Google Scholar 

  35. Carlson BA, Dubay MM, Sausville EA, Brizuela L & Worland PJ (1996) Flavopiridol induces Gl arrest with inhibition of cyclin-dependent kinase (CDK) 2 and CDK4 in human breast carcinoma cells. Cancer Res 56, 2973–8

    PubMed  CAS  Google Scholar 

  36. Losiewicz MD, Carlson BA, Kaur G, Sausville EA & Worland PJ (1994) Potent inhibition of CDC2 kinase activity by the flavonoid L86–8275. Biochem Biophys Res Commun 201, 589–95

    Article  PubMed  CAS  Google Scholar 

  37. Bible KC & Kaufmann SH (1997) Cytotoxic synergy between flavopiridol (NSC 649890, L86–8275) and various antineoplastic agents: the importance of sequence of administra tion/. Cancer Res 57, 3375–80

    PubMed  CAS  Google Scholar 

  38. Senderowicz AM, Headlee D, Stinson SF, Lush RM, Kalil N, Villalba L, Hill K, Steinberg S M, Figg WD, Tompkins A, Arbuck SG & Sausville EA (1998) Phase I trial of continuous infusion flavopiridol, a novel cyclin-dependent kinase inhibitor, in patients with refractory neoplasms. J Clin Oncol 16, 2986–99

    PubMed  CAS  Google Scholar 

  39. Schwartz GK, Werner JL, Maslak P, Saltz L, O’Reilly E, Kelsen DP, Inzeo D, Sugarman A, Tong W & Spriggs D (1998) Flavopiridol enhances the biological effects of paclitaxel: a phase i trial in patients with advanced solid tumors.. Proc Am Soc Clin Oncol 17, 188a Abstract 725

    Google Scholar 

  40. Akiyama T, Yoshida T, Tsujita T, Shimizu M, Mizukami T, Okabe M & Akinaga S (1997) Gl phase accumulation induced by UCN-01 is associated with dephosphorylation of Rb and CDK2 proteins as well as induction of CDK inhibitor p21/Cipl/WAFl/Sdil in p53-mutated human epidermoid carcinoma A431 cells. Cancer Res 57, 1495–501

    PubMed  CAS  Google Scholar 

  41. Yu L, Graves P, Tempcyzk A, Sausville EA, Piwnica-Worms H & O’Connor PM (1999) The checkpoint kinase Chkl is a target of the anticancer agent UCN-01. Proc. Amer. Assoc. Cancer Res.40, Abstract 2019

    Google Scholar 

  42. Seynaeve CM, Kazanietz MG, Blumberg PM, Sausville EA & Worland PJ (1994) Differential inhibition of protein kinase C isozymes by UCN-01, a staurosporine analogue. Mol Pharmacol 45, 1207–14

    PubMed  CAS  Google Scholar 

  43. Wang Q, Fan S, Eastman A, Worland PJ, Sausville EA & O’Connor PM (1996) UCN-01: a potent abrogator of G2 checkpoint function in cancer cells with disrupted p53. J Natl Cancer Inst 88, 956–65

    Article  PubMed  CAS  Google Scholar 

  44. Monks A, Harris E, Connelly J & Hose C (1999) Enhancement of fludarabine and gemcitabine toxicity by UCN-01 in a variety of human tumor cell lines. Proc. Amer. Assoc. Cancer Res 40, Abstract 45

    Google Scholar 

  45. Shao RG, Cao CX, Shimizu T, O’Connor PM, Kohn KW & Pommier Y (1997) Abrogation of an S-phase checkpoint and potentiation of camptothecin cytotoxicity by 7-hydroxystau-rosporine (UCN-01) in human cancer cell lines, possibly influenced by p53 function. Cancer Res 57, 4029–35

    PubMed  CAS  Google Scholar 

  46. Shao RG, Shimizu T & Pommier Y (1997) 7-Hydroxystaurosporine (UCN-01) induces apoptosis in human colon carcinoma and leukemia cells independently of p53. Exp Cell Res 234, 388–97

    Article  PubMed  CAS  Google Scholar 

  47. Akinaga S, Nomura K, Gomi K & Okabe M (1993) Enhancement of antitumor activity of mitomycin C in vitro and in vivo by UCN-01, a selective inhibitor of protein kinase C. Cancer Chemother Pharmacol 32, 183–9

    Article  PubMed  CAS  Google Scholar 

  48. Senderowicz A, Headlee D, Lush R, Arbuck S, Bauer K, Figg W, Murgo A, Inoue K, Kobashi S, Kuwabara T & Sausville E (1999) Phase 1 trial of infusional UCN-01, a novel protein kinase inhibitor, in patients with refractory neoplasms. Proc Am Soc Clin Oncol 18, 159a Abstract 612

    Google Scholar 

  49. Ciechanover A & Schwartz AL (1994) The ubiquitin-mediated proteolytic pathway: mechanisms of recognition of the proteolytic substrate and involvement in the degradation of native cellular proteins. Faseb J 8, 182–91

    PubMed  CAS  Google Scholar 

  50. Laney JD & Hochstrasser M (1999) Substrate targeting in the ubiquitin system. Cell 97, 427–30

    Article  PubMed  CAS  Google Scholar 

  51. Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, Maas J, Pien C S, Prakash S & Elliott PJ (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59, 2615–22

    PubMed  CAS  Google Scholar 

  52. David G, Alland L, Hong SH, Wong CW, DePinho RA & Dejean A (1998) Histone deacetylase associated with mSin3A mediates repression by the acute promyelocytic leukemia-associated PLZF protein. Oncogene 16, 2549–56

    Article  PubMed  CAS  Google Scholar 

  53. Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, Fanelli M, Ruthardt M, Ferrara FF, Zamir I, Seiser C, Lazar MA, Minucci S & Pelicci PG (1998) Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 391, 815–8

    Article  PubMed  CAS  Google Scholar 

  54. Lin RJ, Nagy L, Inoue S, Shao W, Miller WH Jr. & Evans RM (1998) Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 391, 811–4

    Article  PubMed  CAS  Google Scholar 

  55. Warrell RP Jr., He LZ, Richon V, Calleja E. & Pandolfi PP (1998) Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase (see comments)/. J Natl Cancer Inst 90, 1621–5

    Article  PubMed  CAS  Google Scholar 

  56. Baylin SB, Herman JG, Graff JR, Vertino PM & Issa JP (1998) Alterations in DNA methy-lation: a fundamental aspect of neoplasia. Adv Cancer Res 72, 141–96

    Article  PubMed  CAS  Google Scholar 

  57. Cameron EE, Bachman KE, Myohanen S, Herman JG & Baylin SB (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21, 103–7

    Article  PubMed  CAS  Google Scholar 

  58. Swisher SG, Roth JA, Nemunaitis J, Lawrence DD, Kemp BL, Carrasco CH, Connors DG, El-Naggar AK, Fossella F, Glisson BS, Hong WK, Khuri FR, Kurie JM, Lee JJ, Lee JS, Mack M, Merritt JA, Nguyen DM, Nesbitt JC, Perez-Soler R, Pisters KM, Putnam JB Jr., Richli WR, Savin M, Waugh MK & et al. (1999) Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer. J Natl Cancer Inst 91, 763–71

    Google Scholar 

  59. Rothmann T, Hengstermann A, Whitaker NJ, Scheffner M & zur Hausen H (1998) Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells/ J Virol 72, 9470–8

    Google Scholar 

  60. Harada JN & Berk AJ (1999) p53-Independent and -dependent requirements for E1B-55K in adenovirus type 5 replication/. J Virol/ 73, 5333–44

    CAS  Google Scholar 

  61. Kirn D, Nemunaitis J, Ganly I, Posner M, Vokes E, Kuhn J, Heise C, Maack C & Kауе S (1998) A phase II trial of intratumoral injection with an EIB-deleted adenovirus, onyx-015, in patients with recurrent, refractory head and neck cancer/. Proc Am Soc Clin Oncol 17, 391a Abstract 1509

    Google Scholar 

  62. Kirn DH, Khuri F, Ganly I, Arseneau JC, Tannock I, Gore M, Ironside J, Heise C, Romel L, Kaye SB & Nemunaitis J J (1999) A phase II trial of onyx-015, a selectively replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Proc Am Soc Clin Oncol 18, 389a Abstract 1505

    Google Scholar 

  63. Schmitt CA & Lowe SW (1999) Apoptosis and therapy. J Pathol 187, 127–37

    Article  PubMed  CAS  Google Scholar 

  64. Deigner HP & Kinscherf R (1999) Modulating apoptosis: current applications and prospects for future drug development. Curr Med Chem 6, 399–414

    PubMed  CAS  Google Scholar 

  65. Lundberg AS & Weinberg RA (1999) Control of the cell cycle and apoptosis. Eur J Cancer 35, 531–9

    Article  PubMed  CAS  Google Scholar 

  66. Dixon SC, Soriano B J, Lush RM, Börner MM & Figg WD (1997) Apoptosis: its role in the development of malignancies and its potential as a novel therapeutic target. Ann Pharmacother/31, 76–82

    Google Scholar 

  67. Shimizu S, Narita M & Tsujimoto Y (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome с bv the mitochondrial channel VDAC. Nature 399, 483–7

    Article  PubMed  CAS  Google Scholar 

  68. Rosse T, Olivier R, Monney L, Rager M, Conus S, Feilay I, Jansen B & Borner C (1998) Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 391, 496–9

    Article  PubMed  CAS  Google Scholar 

  69. Eliopoulos AG, Kerr DJ, Herod J, Hodgkins L, Krajewski S, Reed JC & Young LS (1995) The control of apoptosis and drug resistance in ovarian cancer: influence of p53 and Bcl-2. Oncogene 11, 1217–28

    PubMed  CAS  Google Scholar 

  70. Ho SP, Britton DH, Stone BA, Behrens DL, Leffet LM, Hobbs FW, Miller JA & Trainor GL (1996) Potent antisense oligonucleotides to the human multidrug resistance-1 mRNA are rationally selected by mapping RNA-accessible sites with oligonucleotide libraries. Nucleic Acids Res 24, 1901–7

    Article  PubMed  CAS  Google Scholar 

  71. Kuss B & Cotter F (1999) Antisense--time to shoot the messenger. Ann Oncol 10, 495–503

    Article  PubMed  CAS  Google Scholar 

  72. Webb A, Cunningham D, Cotter F, Clarke PA, di Stefano F, Ross P, Corbo M & Dziewanowska Z (1997) BCL-2 antisense therapy in patients with non-Hodgkin lymphoma. Lancet 349, 1137–41

    Article  PubMed  CAS  Google Scholar 

  73. Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH, Meli S & Gaspa-rini G (1992) Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 84, 1875–87

    Article  PubMed  CAS  Google Scholar 

  74. Hanahan D & Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–64

    Article  PubMed  CAS  Google Scholar 

  75. Bouck N (1996) P53 and angiogenesis. Biochim Biophys Acta/ 1287, 63–6

    Google Scholar 

  76. Arbiser JL, Moses MA, Fernandez CA, Ghiso N, Cao Y, Klauber N, Frank D, Brownlee M, Flynn E, Parangi S, Byers HR & Folkman J (1997) Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc Natl Acad Sci U S A 94, 861–6

    Article  PubMed  CAS  Google Scholar 

  77. Desai SB & Libutti SK (1999) Tumor angiogenesis and endothelial cell modulatory factors (see comments)/. J Immunother 22, 186–211

    Article  PubMed  CAS  Google Scholar 

  78. Stetler-Stevenson WG (1999) Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest/ 103, 1237–41

    Article  CAS  Google Scholar 

  79. Eliceiri BP & Cheresh DA (1999) The role of alphav integrins during angiogenesis: insights into potential mechanisms of action and clinical development/. J Clin Invest 103, 1227–30

    Article  PubMed  CAS  Google Scholar 

  80. Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA & Cheresh DA (1995) Definition of two angiogenic pathways by distinct alpha v integrins. Science/ 270, 1500–2

    Article  CAS  Google Scholar 

  81. O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH & Folkman J (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma (see comments)/. Cell/ 79, 315–28

    Article  Google Scholar 

  82. O’Reilly MS, Holmgren L, Chen C & Folkman J (1996) Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 2, 689–92

    Article  PubMed  Google Scholar 

  83. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR & Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–85

    Article  PubMed  Google Scholar 

  84. Boehm T, Folkman J, Browder T & O’Reilly MS (1997) Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390, 404–7

    Article  PubMed  CAS  Google Scholar 

  85. Augustin HG (1998) Antiangiogenic tumour therapy: will it work?. Trends Pharmacol Sci 19, 216–22

    Article  PubMed  CAS  Google Scholar 

  86. McCurley CR, Shivers RR & Del Maestro RF (1998) Quantitative comparison of the morphology of the microvasculature of primary lung lesions and metastatic brain tumours. J Submicrosc Cytol Pathol 30, 257–69

    PubMed  CAS  Google Scholar 

  87. Lassau N, Paturel-Asselin C, Guinebretiere JM, Leclere J, Koscielny S, Roche A, Chouaib S & Peronneau P (1999) New hemodynamic approach to angiogenesis: color and pulsed Doppler ultrasonography. Invest Radiol 34, 194–8

    Article  PubMed  CAS  Google Scholar 

  88. Silverman DH, Höh CK, Seltzer MA, Schlepers C, Cuan GS, Gambhir SS, Zheng L, Czernin J & Phelps ME (1998) Evaluating tumor biology and oncological disease with positron-emission tomography. Semin Radiat Oncol 8, 183–96

    Article  PubMed  CAS  Google Scholar 

  89. Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D & Levine AJ (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci U S A 96, 6745–50

    Article  PubMed  CAS  Google Scholar 

  90. Jungblut PR, Zimny-Arndt U, Zeindl-Eberhart E, Stulik J, Koupilova K, Pleissner KP, Otto A, Muller EC, Sokolowska-Kohler W, Grabher G & Stoffler G (1999) Proteomics in human disease: cancer, heart and infectious diseases. Electrophoresis 20, 2100–10

    Article  PubMed  CAS  Google Scholar 

  91. Lieberman R, Crowell JA, Hawk ET, Boone CW, Sigman CC & Kelloff GJ (1998) Development of new cancer chemoprevention agents: role of pharmacokinetic/pharmacodynamic and intermediate endpoint biomarker monitoring. Clin Chem 44, 420–7

    PubMed  CAS  Google Scholar 

  92. Kerbel RS (1998) What is the optimal rodent model for anti-tumor drug testing?. Cancer Metastasis Rev 17, 301–4

    Article  PubMed  Google Scholar 

  93. Georges RN, Mukhopadhyay T, Zhang Y, Yen N & Roth JA (1993) Prevention of orthotopic human lung cancer growth by intratracheal instillation of a retroviral antisense K-ras construct. Cancer Res 53, 1743–6

    PubMed  CAS  Google Scholar 

  94. DeGeorge JJ, Ahn CH, Andrews PA, Brower ME, Giorgio DW, Goheer MA, Lee-Ham DY, McGuinn WD, Schmidt W, Sun C J & Tripathi SC (1998) Regulatory considerations for preclinical development of anticancer drugs. Cancer Chemother Pharmacol 41, 173–85

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag France

About this chapter

Cite this chapter

Dancey, J., Arbuck, S. (2000). Cancer Drugs and Cancer Drug Development for the New Millennium. In: Khayat, D., Hortobagyi, G.N. (eds) Progress in Anti-Cancer Chemotherapy. Progress in Anti-Cancer Chemotherapy, vol 4. Springer, Paris. https://doi.org/10.1007/978-2-8178-0920-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0920-5_6

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-59692-6

  • Online ISBN: 978-2-8178-0920-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics