Skip to main content

Abstract

For over two decades, calcium phosphates have been the focus of many laboratory and clinical investigations (1–8). Particular interest has surrounded calcium hydroxyapatite (HA), a naturally occurring calcium phosphate present in tooth enamel and vertebrate bone. In the early 1980’s, the dental community began using HA blocks and coatings to augment bone and encourage fixation in restorative dental procedures ; the chemical stability and excellent biocompatibility of HA made it an attractive material choice (1, 5, 9, 10). Subsequently, the orthopaedic community investigated and began using HA for bone defect obliteration and as an implant coating, with encouraging results (3, 11, 12). More recently, attention has been given to biphasic calcium phosphates (BCP), which combine HA and tricalcium phosphate (TCP) in different ratios. Solid, porous, and granular forms of HA and BCP materials have been employed for filling defects (13–16). Current studies involving the use of block HA as a drug delivery system and the use of HA with either bone cement or growth factors all show promise, as do HA composite materials, such as BCP (17–19).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference list

  1. Lacefield WR (1998) Current status of ceramic coatings for dental implants. Implant Dent. 7(4):315–22.

    CAS  PubMed  Google Scholar 

  2. Spivak JM, Hasharoni A (2001) Use of hydryoxyapatite in spine surgery. Eur. Spine J. 10:Suppl 2: S197–S204.

    PubMed Central  PubMed  Google Scholar 

  3. Bucholz RW (2002) Nonallograft osteoconductive bone graft substitutes. Clin. Orthop. 395:44–52.

    PubMed  Google Scholar 

  4. Geesink RGT (2002) Osteoconductive coatings for total joint arthroplasty. Clin. Orthop. 395:53–65.

    PubMed  Google Scholar 

  5. Block MS, Kent JN (1984) Long term radiographic evaluation of HA-augmented mandibular alveolar ridges. J. Oral. Maxillofac. Surg. 42.

    Google Scholar 

  6. Driskell TD, Hassler CR, McCoy LR (1973) The significance of resorbable bioceramics in the repair of bone defects. Proceedings of the 26th Annual Conference on Medical Biomaterials. Vol. 15. p. 199.

    CAS  Google Scholar 

  7. Epinette JA, Geesink RGT (1995), eds. Hydroxyapatite Coated Hip and Knee Arthroplasty. Vol. 51. Cahiers d’enseignement de la SOFCOT.

    Google Scholar 

  8. Epinette JA (1995) HA-coated hip implants: a 10 year follow-up. Eur. J. Orthop. Surg. Traumatol. 9: 83–5.

    Google Scholar 

  9. Jarcho M (1992) Retrospective analysis of hydroxyapatite development for oral implant applications. Dent. Clin. North. Am. 36:19–26.

    CAS  PubMed  Google Scholar 

  10. Kent JN, Quinn JH, Zide MF, Guerra LR, Boyne PJ (1983) Alveolar ridge augmentation using nonresorbable HA with or without autogenous cancellous bone. J. Oral. Maxillofac. Surg. 41:629–42.

    CAS  PubMed  Google Scholar 

  11. Larsson S, Bauer TW (2002) Use of injectable calcium phosphate cement for fracture fixation: a review. Clin. Orthop. 395:23–32.

    PubMed  Google Scholar 

  12. Koshino T, Murase T, Takagi T, Saito T (2001) New bone formation around porous hydroxyapatite wedge implanted in opening wedge high tibial osteotomy in patient with osteoarthritis. Biomaterials. 22:1579–82.

    CAS  PubMed  Google Scholar 

  13. Ayers RA, Simske S.1, Nunes CR, Wolford LM (1998) Long-term bone ingrowth and residual microhardness of porous block hydroxyapatite implants in humans. J. Oral. Maxillofac. Surg. 56:1297–301.

    CAS  PubMed  Google Scholar 

  14. Oonishi H, Iwaki Y, Kin N, Kushitani S, Murata N, Wakitani S, Imoto K (1997) Hydroxyapatite in revision of total hip replacements with massive acetabular defects. J. Bone Joint Surg. Br. 79:87–92.

    CAS  PubMed  Google Scholar 

  15. Hinz P, Wolf E, Schwesinger G, Hartelt E, Ekkernkamp A (2002) A new resorbable bone void filler in trauma: early clinical experience and histologic evaluation. Orthopedics. 25:5597–S600.

    Google Scholar 

  16. Adenis JP, Bertin P, Lasudry JG, Boncoeur-Martel MP, Leboutet MJ, Robert PY (1999) Treatment of postnucleation socket syndrome with a new hydroxyapatite tricalcium phosphate ceramic implant. Ophthal. Plast. Reconstr. Surg. 15:277–83.

    CAS  PubMed  Google Scholar 

  17. Alam I, Asahina I, Ohmamiuda K, Enomoto S (2001) Comparative study of biphasic calcium phosphate ceramics impregnated with rhBMP-2 as bone substitutes. J. Biomed. Mater. Res. 54:129–38.

    CAS  PubMed  Google Scholar 

  18. Rogers-Foy JM, Powers DL, Brosnan DA, Barefoot SF, Friedman RJ, La Berge M (1999) Hydroxyapatite composites designed for antibiotic drug delivery and bone reconstruction: a caprine model. J. Invest. Surg. 12:263–75.

    CAS  PubMed  Google Scholar 

  19. Itokazu M, Matsunaga T, Kumazawa S, Yang WA (1995) Novel drug delivery system for osteomyelitis using porous hydroxyapatite blocks loaded by centrifugation. J. Appl. Biomater. 6:167–9.

    CAS  PubMed  Google Scholar 

  20. Greenwald AS, Boden SD, Goldberg VM, Khan Y, Laurencin CT, Rosier RN (2001) Bone-graft substitutes: facts, fictions, and applications. J. Bone Joint Surg. 83A(Suppl 2, Part 2):S98–S 103.

    Google Scholar 

  21. Urist MR (1980) Bone transplants and implants, In: Fundamental and Clinical Bone Physiology, Urist, M.R., Editor. J.B. Lippincott: Philadelphia. p. 331–68.

    Google Scholar 

  22. Damien CJ, Parsons JR (1991) Bone graft and bone graft substitutes: a review of current technology and applications. J. Appl. Biomater. 2:187–208.

    CAS  PubMed  Google Scholar 

  23. Einhorn TA (1995) Enhancement of fracture-healing. J. Bone Joint Surg. 77-A(6):940–56.

    CAS  PubMed  Google Scholar 

  24. Bolander ME (1992) Regulation of fracture repair by growth factors. Proc. Soc. Exper. Biol. and Med. 200:165–70.

    CAS  Google Scholar 

  25. Black J (1988) Ceramics and composites, In: Orthopaedic Biomaterials in Research and Practice. Churchill Livingstone, Inc: New York, NY. p. 191–211.

    Google Scholar 

  26. Jarcho M (1981) Calcium phosphate ceramics as hard tissue prosthetics. Clin. Orthop. 157:259–78.

    CAS  PubMed  Google Scholar 

  27. Chang YL, Lew D, Park JB, Keller JC (1999) Bio-mechanical and morphometric analysis of hydroxyapatite-coated implants with varying crystallinity. J. Oral Maxillofac. Surg. 57:1096–108.

    CAS  PubMed  Google Scholar 

  28. Gao TJ, Lindholm TS, Kommonen B, Ragni P, Paronzini A, Lindholm TC (1995) Microscopic evaluation of bone-implant contact between hydroxyapatite, bioactive glass and tricalcium phosphate implanted in sheep diaphyseal defects. Biomaterials. 16:1175–9.

    CAS  PubMed  Google Scholar 

  29. Malard O, Bouler JM, Guicheux J, Heymann D, Pilet P, Coquard C, Daculsi G (1999) Influence of biphasic calcium phosphate granulometry on bone ingrowth, ceramic resorption, and inflammatory reactions: preliminary in vitro and in vivo study. J. Biomed. Mater. Res. 46:103–11.

    CAS  PubMed  Google Scholar 

  30. Harada Y, Wang JT, Doppalapudi VA, Willis AA, Jasty M, Harris WH, Nagase M, Goldring SR (1996) Differential effects of different forms of hydroxyapatite and hydroxyapatite/tricalcium phosphate particulates on human monocyte/macrophages in vitro. J. Biomed. Mater. Res. 31:19–26.

    CAS  PubMed  Google Scholar 

  31. Klein CPAT, Driessen AA, de Groot K (1984) Relationship between the degradation behavior of calcium phosphate ceramics and their physical-chemical characteristics and ultrastructrual geometry. Biomaterials. 5:157–60.

    CAS  PubMed  Google Scholar 

  32. Hoogendorn HA, Renooij W, Akkermans LMA, Visser W, Wittebol P (1984) Long term study of large ceramic implants (porous hydroxyapatite) in dog femora. Clin. Orthop. 187:281–8.

    Google Scholar 

  33. Lee DR, Lemmons JE, LeGeros RZ (1989) Dissolution characteristics of commercially available HA particulate. 15th Annual Meeting of the Society for Biomaterials. Vol. 161. Lake Buena Vista, FL.

    Google Scholar 

  34. Clerics L, Fernandez-Pradas JM, Sardin G, Morenza JL (1998) Dissolution behaviour of calcium phosphate coatings obtained by laser ablation. Biomaterials. 19:1483–87.

    Google Scholar 

  35. Daculsi G (1998) Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials. 19:1473–78.

    CAS  PubMed  Google Scholar 

  36. Klein CP, de Blieck-Hogervorst JM, Wolke JG, de Groot K (1990) Studies of the solubility of different calcium phosphate ceramic particles in vitro. Biomaterials. 11:509–12.

    CAS  PubMed  Google Scholar 

  37. Nery EB, LeGeros RZ, Lynch KL, Lee K (1992) Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/beta TCP in periodontal osseous defects. J. Periodontol. 63:729–35.

    CAS  PubMed  Google Scholar 

  38. Toth JM, An HS, Lim TH, Ran Y, Weiss NG, Lundberg WR, Xu RM, Lynch KL (1995) Evaluation of porous biphasic calcium phosphate ceramics for anterior cervical interbody fusion. Spine. 20:2203–10.

    CAS  PubMed  Google Scholar 

  39. Klein CPAT, Driessen AA, de Groot K, van den Hooff A (1983) Biodegradation behavior of various calcium phosphate materials in bone tissue. J. Biomed. Mater. Res. 17:769–84.

    CAS  PubMed  Google Scholar 

  40. Bauer TW, Geesink RGT, Zimmerman R, McMahon JT (1991) Hydroxyapatite-coated femoral stems. Histological analysis of components retrieved at autopsy. J. Bone Joint Surg. Am. 73:1439–52.

    CAS  Google Scholar 

  41. Overgaard S, Lind M, Glerup H, Bunger C, Stballe K (1998) Porous-coated versus grit-blasted surface texture of hydroxyapatite-coated implants during controlled mircomotion: mechanical and histomorphometric results. J. Arthroplasty. 13:449–58.

    CAS  PubMed  Google Scholar 

  42. Okumura M, Ohgushi H, Dohi Y, Katuda T, Tamai S, Koerten HK, Tabata S (1997) Osteoblastic phenotype expression on the surface of hydroxyapatite ceramics. J. Biomed. Mater Res. 37:122–29.

    CAS  PubMed  Google Scholar 

  43. Holmes RE, Hagler HK. Porous HA (1987) as a bone graft substitute in mandibular contour augmentation: a histometric study. J. Oral Maxillofac. Surg. 45:421–29.

    CAS  PubMed  Google Scholar 

  44. Holmes RE, Hagler HK (1988) Porous hydroxyapatite as a bone graft substitute in maxillary augmentation. A histometric study. J. Craniofac. Surg. 16:199–205.

    CAS  Google Scholar 

  45. Chang BS, Lee CK, Hong KS, Youn HJ, Ryu HS, Chung SS, Park KW (2000) Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials. 21:1291–8.

    CAS  PubMed  Google Scholar 

  46. Okazaki A, Koshino T, Saito T, Takagi T (2000) Osseous tissue reaction around hydroxyapatite block implanted into proximal metaphysic of tibia of rat with collagen-induced arthritis. Biomaterials. 21:483–7.

    CAS  PubMed  Google Scholar 

  47. Steffen T, Stoll T, Arvinate T, Schenk RK (2001) Porous tricalcium phosphate and transforming growth factor used for anterior spine surgery. Eur. Spine J. 10(Suppl 2): S132–S140.

    PubMed Central  PubMed  Google Scholar 

  48. Guo L, Guo X, Leng Y, Cheng JC, Zhang X ( 2001). Nanoindentation study of interfaces between calcium phosphate and bone in an animal spinal fusion model. J. Biomed. Mater. Res. 54:554–9.

    CAS  PubMed  Google Scholar 

  49. Itokazu M, Kumazawa S, Wada E, Yang W (1996) Sustained release of adriamycin from implanted hydroxyapatite blocks for the treatment of experimental osteognic sarcoma in mice. Cancer Lett. 107:11–8.

    CAS  PubMed  Google Scholar 

  50. Shinto Y, Uchida A, Korkusuz F, Araki N, Ono K (1992) Calcium hydroxyapatite ceramics used as a delivery system for antibiotics. J. Bone Joint Surg. Br. 74:600–4.

    CAS  PubMed  Google Scholar 

  51. Wippermann B, Donow C, Schratt HE, den Boer FC, Blokhuis T, Patka P (1999) The influence of hydroxyapatite granules on the healing of a segmental defect filled with autologous bone marrow. Ann. Chir. Gyn. 88:194–7.

    CAS  Google Scholar 

  52. Grundel RE, Chapman MW, Yee T, Moore DC (1991) Autogeneic bone marrow and porous biphasic calcium phospahte ceramic for segmental bone defects in the canine ulna. Clin. Orthop. 266:244–58.

    PubMed  Google Scholar 

  53. Stelnicki EJ, Ousterhout DK (1997) Hydroxyapatite paste (Bone Source) used as an onlay implant for supraorbital and malar augmentation. J. Craniofac. Surg. 8:367–72.

    CAS  PubMed  Google Scholar 

  54. Petruzzelli GJ, Stankiewicz JA (2002) Frontal sinus obliteration with hydroxyapatite cement. Laryngoscope. 112:32–6.

    PubMed  Google Scholar 

  55. Joosten U, Joist A, Frebel T, Walter M, Langer M (2000) The use of an in situ curing hydroxyapatite cement as an alternative to bone graft following removal of enchondroma of the hand. J. Hand. Surg. Br. 25:288–91.

    CAS  PubMed  Google Scholar 

  56. Kwon SY, Kim YS, Woo YK, Kim SS, Park JB (1997) Hydroxyapatite impregnated bone cement: in vitro and in vivo studies. Biomed. Mater. Eng. 7:129–40.

    CAS  PubMed  Google Scholar 

  57. Dalby MJ, Di Silvio L, Harper EJ, Bonfield W (2001) Initial interaction of osteoblasts with the surface of a hydroxyapatite-poly(methylmethacrylate) cement. Biomaterials. 22:1739–47.

    CAS  PubMed  Google Scholar 

  58. Morita S, Furuya K, Kazuhiko I, Nakabayashi N (1998) Performance of adhesive bone cement containing hydroxyapatite particles. Biomaterials. 19:1601–6.

    CAS  PubMed  Google Scholar 

  59. Oonishi H, Kadoya Y, Iwaki H, Kin N (2000) Hydroxyapatite granules interposed at bone-cement interface in total hip replacements: histological study of retrieved specimens. J. Biomed. Mater. Res. 53:17480.

    Google Scholar 

  60. Ohura K, Bohner M, Hardouin P, Lemaitre J, Pasquier G, Flautre B (1996) Resorption of, and bone formation from, new beta-tricalcium phosphate-monocalcium phosphate cements: an in vivo study. J. Biomed Mater Res. 30:193–200.

    CAS  PubMed  Google Scholar 

  61. Manley MT (1993) Calcium phosphate biomaterials: a review of the literature, In: Hydroxyapatite Coatings in Orthopaedic Surgery, Geesink, R.G.T. and Manley, M.T., Editors. Raven Press: New York. p. 1–24.

    Google Scholar 

  62. Geesink R, DeGroot K, Klein C (1988) Bonding of bone to apatite-coated implants. J. Bone Joint Surg. Br. 70:17–22.

    CAS  PubMed  Google Scholar 

  63. Cook SD, Thomas KA, Kay JF, Jarcho M (1988) Hydroxyapatite-coated titanium for orthopedic implant applications. Clin. Orthop. 232:225–43.

    CAS  PubMed  Google Scholar 

  64. DeGroot K, Geesink RGT, Klein CPAT, Serekian P (1987) Plasma sprayed coatings of HA. J. Biomed. Mater. Res. 21:1375–81.

    CAS  Google Scholar 

  65. DeGroot K (1983) Bioceramics of Calcium Phosphates, Boca Raton, FL: CRC Press, Inc.

    Google Scholar 

  66. Block MS, Kent JN, Kay JF (1987) HA-coated titanium dental implants in dogs. J. Oral. Maxillofac. Surg. 42:793–807.

    Google Scholar 

  67. Hayashi K, Uenoyama K, Matsuguchi N, Sugioka Y (1991) Quantitative analysis of in vivo tissue responses to titanium-oxide and hydroxyapatite-coated titanium alloy. J. Biomed. Mater. Res. 25: 515–23.

    CAS  PubMed  Google Scholar 

  68. Boone PS, Zimmerman MC, Gutteling E, Lee CK, Parsons JR, Langrana N (1989) Bone attachment to hydroxyapatite-coated polymers. J. Biomed. Mater. Res. 23(A2):183–99.

    CAS  PubMed  Google Scholar 

  69. Manley MT, Kay JF, Yoshiya S, Stern LS (1987), Stulberg BN: Accelerated fixation of weight bearing implants by HA coatings. Orthopedic Research Society 33rd Annual Meeting. Vol. 12. p. 214, San Francisco, California.

    Google Scholar 

  70. Manley MT, Kay JF, Uratsuji M, Stern LS, Stulberg BN (1987) Fixation of porous titanium and smooth HA interfaces in a loaded model. 13th Annual Meeting of the Society of Biomaterials. p. 210, New York, NY.

    Google Scholar 

  71. Manley MT, Gaisser DM, Uratsuji M, Stulberg BN, Bauer TW, Stern LS (1988) Fixation of porous titanium and smooth HA interfaces in a loaded model. 34th Annual Meeting, Orthopaedic Research Society. p. 332, Atlanta, GA.

    Google Scholar 

  72. Pazzaglia UE, Brossa F, Zatti G, Chiesa R, Andrini L (1998) The relevance of hydroxyapatite and spongious titanium coatings in fixation of cementless stems. An experimental comparative study in rat femur employing histological and microangiographic techniques. Arch. Orthop. Trauma. Surg. 117:279–85.

    CAS  Google Scholar 

  73. Marinoni EC, Fontana A, Castellano S (1995) Osteointegration of 96 cementless hip prostheses with hydroxyapatite coating: 5 years follow-up. Chir. Organi Mov. 80:147–55.

    CAS  PubMed  Google Scholar 

  74. Soballe K (1993) Hydroxyapatite ceramic coating for bone implant fixation. Mechanical and histological studies in dogs. Acta Orthop. Scand. Suppl. 255:1–58.

    CAS  Google Scholar 

  75. Thomas KA, Cook SD, Kay JF, Jarcho M, Anderson RC, Harding AF, Reynolds MC (1986) Attachment strength and histology of HA coated implants, In: Biomedical Engineering v. Recent Developments. Proceedings of the Fifth Southern Biomedical Engineering Conference, Saha, S., Editor. Pergamon Press: New York, NY. p. 205–11.

    Google Scholar 

  76. Rivero DP, Fox J, Skipor AK, Urban RM, Galante JO (1988) Calcium phosphate coated porous titanium implants for enhanced skeletal fixation. J. Biomed. Mater. Res. 22:191–201.

    CAS  PubMed  Google Scholar 

  77. Cook SD, Thomas KA, Dalton JE, Volkman TK, Whitecloud III TS, Kay JF (1992) HA coating of porous implants improves bone ingrowth and interface attachment strength. J. Biomed. Mater. Res. 26:989–1001.

    CAS  PubMed  Google Scholar 

  78. Cook SD, Thomas KA, Kay JF, Jarcho M (1988) Hydroxyapatite-coated porous titanium for use as an orthopedic biologic attachment system. Clin. Orthop. 230:303–12.

    CAS  PubMed  Google Scholar 

  79. Ramires PA, Romito A, Cosentino F, Milella E (2001) The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behaviour. Biomaterials. 22:1467–74.

    CAS  PubMed  Google Scholar 

  80. Caropreso S, Cerroni L, Marini S, Cocchia D, Martinetti R, Condo SG (1997) Necessity and validity of standard models for experimental preclinical evaluation of biomaterials. An example of biologic characterization of a hydroxyapatite-based implant material. Minerva Stomatol. 46:45–50.

    CAS  Google Scholar 

  81. Ruano R, Jaeger RG, Jaeger MM (2000) Effect of a ceramic and a non-ceramic hydroxyapatite on cell growth and procollagen synthesis of cultured human gingival fibroblasts. J. Periodontol. 71:540–5.

    CAS  PubMed  Google Scholar 

  82. Sun JS, Lin FH, Hung TY, Tsuang YH, Chang WH, Liu HC (1999) The influence of hydroxyapatite particles on osteoclast cell activities. J. Biomed. Mater. Res. 45:311–21.

    CAS  PubMed  Google Scholar 

  83. Gumaer KI, Salsbury RL, Sauerschell RJ, Slighter RG, Drobeck HP (1985) Evaluation of hydroxylap-atite root implants in baboons. Journal of Oral and Maxillofacial Surgery. 44:73–9.

    Google Scholar 

  84. Daculsi G, LeGeros RZ, Nery E, Lynch K, Kerebel B (1989) Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization. Biomed. Mater. Res. 23:883–94.

    CAS  Google Scholar 

  85. Drobeck HP, Rothstein SS, Gumaer KI, Sherer AD, Slighter RG (1984) Histologic observations of soft tissue responses to implanted, multifaceted particles and discs of HA. Journal of Oral and Maxillofacial Surgery. 42:143–9.

    CAS  PubMed  Google Scholar 

  86. Eggli PS, Muller RW, Schenk RK (1988) Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphic and histologic study of bony ingrowth and implant substitution. Clin. Orthop. 232:127–38.

    CAS  Google Scholar 

  87. Bell R, Beirne OR (1988) Effect of HA, tricalcium phosphate, and collagen on the healing of defects in the rat mandible. Journal of Oral and Maxillofacial Surgery. 46:589–94.

    CAS  PubMed  Google Scholar 

  88. Lin TC, Su CY, Chang CS (1997) Stereomorphologic observation of bone tissue response to hydroxyapatite using SEM with the EDTA-KOH method. J. Biomed. Mater. Res. 36:91–7.

    CAS  PubMed  Google Scholar 

  89. Furukawa T, Matsusue Y, Yasunaga T, Shikinami Y, Okuno M, Nakamura T (2000) Biodegradation behavior of ultra-high-strength hydroxyapatite/poly (L-lactide) composite rods for internal fixation of bone fractures. Biomaterials. 21:889–98.

    CAS  PubMed  Google Scholar 

  90. Yoshimine Y, Akamine A, Mukai M, Maeda K, Matsukura M, Kimura Y, Makishima T (1993) Biocompatibility of tetracalcium phosphate cement when used as a bone substitute. Biomaterials. 14:403–6.

    CAS  PubMed  Google Scholar 

  91. Liu C, Wang W, Shen W, Chen T, Hu L, Chen Z (1997) Evaluation of the biocompatibility of a nonceramic hydroxyapatite. J. Endod. 23:490–3.

    CAS  PubMed  Google Scholar 

  92. Wu H, Zhu TB, Du JY, Hong GX, Sun SZ, Xu XH (1992) Analysis of the biocompatibility of magnetic porous tricalcium phosphate ceramics in rat femurs. .1. Tongji Med. Univ. 12:111–5.

    CAS  Google Scholar 

  93. Dieppe PA, Huskisson EC, Crocker P, Willoughby DA (1976) Apatite deposition disease. A New Arthropathy. Lancet. 1(7954):266–9.

    CAS  Google Scholar 

  94. Nagase M, Baker DG, Schumacher HR (1988) Prolonged inflammatory reactions induced by artificial ceramics in the rat air pouch model. J. Rheumatol. 15:1334–8.

    CAS  PubMed  Google Scholar 

  95. Rooney T, Berman S, Indresano AT (1988) Evaluation of porous block HA for augmentation of aveolar ridges. J. Oral. Maxillofac. Surg. 46:15–8.

    CAS  PubMed  Google Scholar 

  96. dos Santos LA, Carrodeguas RG, Rogero SO, Higa OZ, Boschi AO, De Arruda AC (2002) Alpha-tricalcium phosphate cement: in vitro cytotoxcity. Biomaterials. 23:2035–42.

    PubMed  Google Scholar 

  97. Anderson GI, Orlando K, Waddell JP (2001) Synovitis subsequent to total-hip arthroplasty with and without hydroxyapatite coatings: a study in dogs. Vet. Surg. 30:311–8.

    CAS  PubMed  Google Scholar 

  98. Mommaerts MY, Nadjmi N, Abeloos JV, Neyt LF (1999) Six years experience with zygomatic “sandwich” osteotomy for correction of malar deficiency. J. Oral. Maxillofac. Surg. 57:8–13.

    CAS  PubMed  Google Scholar 

  99. Cormack DH (1987) Ham’s Histology, ed. 9, Philadelphia, PA: J.B. Lippincott Co. pp. 283–87.

    Google Scholar 

  100. Johnson KD, Frierson KE, Keller TS, Cook C, Scheinberg R, Zerwekh J, Meyers L, Sciadini MF (1996) Porous ceramics as bone graft substitutes in long bone defects: a biomechanical, histological, and radiographic analysis. J. Orthop. Res. 14:351–69.

    CAS  PubMed  Google Scholar 

  101. Zerwekh JE, Kourosh S, Scheinberg R, Kitano T, Edwards ML, Shin D, Selby DK (1992) Fibrillar collagen-biphasic calcium phosphate composite as a bone graft substitute for spinal fusion. J. Orthop. Res. 10:562–72.

    CAS  PubMed  Google Scholar 

  102. Chapman MW, Bucholz R, Cornell C (1997) Treatment of acute fractures with a collagen-calcium phosphate graft material. A randomized clinical trial. J. Bone Joint Surg. (Am). 79:495–502.

    CAS  Google Scholar 

  103. Muschler GF, Negami S, Hyodo A, Gaisser D, Easley K, Kambic H (1996) Evaluation of collagen ceramic composite graft materials in a spinal fusion model. Clin. Orthop. 328:250–60.

    PubMed  Google Scholar 

  104. Bell R, Beirne OR (1988) Effect of HA, tricalcium phosphate, and collagen on the healing of defects in the rat mandible. J. Oral. Maxillofac. Surg. 46:589–94.

    CAS  PubMed  Google Scholar 

  105. Takaoka T, Okumura M, Ohgushi H, Inoue K, Takakura Y, Tamai S (1996) Histological and biochemical evaluation of osteogenic response in porous hydroyapatite coated alumina ceramics. Biomaterials. 17:1499–505.

    CAS  PubMed  Google Scholar 

  106. Yoshikawa T, Ohgushi H, Tamai S (1996) Immediate bone forming capability of prefabricated osteogenic hydroxyapatite. J. Biomed. Mater. Res. 32:481–92.

    CAS  PubMed  Google Scholar 

  107. Frame JW (1987) Hydroxyapatite as a biomaterial for alveolar ridge augmentation. Int. J. Oral. Maxillofac. Surg. 16:642–55.

    CAS  PubMed  Google Scholar 

  108. Munting E (1996) The contributions and limitations of hydroxyapatite coatings to implant fixation: A histomorphometric study of load bearing implants in dogs. Int. Orthop. 20:1–6.

    CAS  PubMed  Google Scholar 

  109. Levine JP, Bradley J, Turk AE, Ricci JL, Benedict JJ, Steiner G, Longaker MT, McCarthy JG (1997) Bone morphogenetic protein promotes vascularization and osteoinduction in preformed hydroxyapatite in the rabbit. Ann. Plast. Surg. 39(2):158–68.

    CAS  PubMed  Google Scholar 

  110. Reddie AH (2001) Bone morphogenetic proteins: from basic science to clinical applications. J. Bone Joint Surg. 83A(Suppl 1, Part 1):S1–S6.

    Google Scholar 

  111. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA (1988) Novel regulators of bone formation: molecular clones and activities. Science. 242:1528–34.

    CAS  PubMed  Google Scholar 

  112. Koempel JA, Patt BS, O’Grady K, Wozney J, Toriumi DM (1998) The effect of recombinant human bone morphogenetic protein-2 on the integration of porous hydroxyapatite implants with bone. J. Biomed. Mater. Res. 5:359–63.

    Google Scholar 

  113. Noshi T, Yoshikawa T, Dohi Y, Ikeuchi M, Horiuchi K, Ichijima K, Sugimura M, Yonemasu K (2001) Recombinant human bone mophogenetic protein-2 potentiates the in vivo osteogenic ability of marrow/hydroxyapatite composites. Artif Organs. 25:201–8.

    CAS  PubMed  Google Scholar 

  114. Noshi T, Yoshikawa T, Ikeuchi M, Dohi Y, Ohgushi H, Horiuchi K, Sugimura M, Ichijima K, Yonemasu K (2000) Enhancement of the in vivo osteogenic potential of marrow/hydroxyapatite composites by bovine bone morphogenetic protein. J. Biomed. Mater. Res. 52:621–30.

    CAS  PubMed  Google Scholar 

  115. Ripamonti U, Ramoshebi LN, Matsaba T, Tasker J, Crooks J, Teare J (2001) Bone induction by BMPs/OPs and related family members in primates. .1. Bone Joint. Surg. 83-A(Suppl 1):S116–27.

    Google Scholar 

  116. Lind M, Overgaard S, Jensen TB, Song Y, Goodman SB, Bunger C, Soballe K (2001) Effect of osteogenic protein 1/collagen composite combined with impacted allograft around hydroxyapatite-coated titanium alloy implants is moderate. J. Biomed. Mater. Res. 55:89–95.

    CAS  PubMed  Google Scholar 

  117. Oda S, Kinoshita A, Higuchi T, Shizuya T, Ishikawa I (1997) Ectopic bone formation by biphasic calcium phosphate (BCP) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2). J. Med. Dent. Sci. 44:53–62.

    CAS  PubMed  Google Scholar 

  118. Cranin AN, Satler NM (1984) Human mandibular alveolar ridge augmentation with HA: final report of a five year investigation. 10th Annual Meeting of the Society for Biomaterials. p. 324, Washington, DC.

    Google Scholar 

  119. Holmes RE, Wardrop RW, Wolford LM (1988) HA as a bone graft substitute in orthognathic surgery: histologic and histometeric findings. J. Oral. Maxillofac. Surg. 46:661–71.

    CAS  PubMed  Google Scholar 

  120. Kent JN, Quinn JH, Zide MF, Finger IM, Jarcho M, Rothstein SS (1982) Correction of alveolar ridge deficiencies with nonresorbable HA. J. Am. Dent. Assoc. 105:993–1001.

    CAS  PubMed  Google Scholar 

  121. Rothstein SS, Paris D, Sage B (1984) Use of durapatite for the rehabilitation of resorbed alveolar ridges. J. Am. Dent. Assoc. 109:571–74.

    CAS  PubMed  Google Scholar 

  122. Meadows G (2002) Adjunctive use of ultraporous beta-tricalcium phosphate bone void filler in spinal arthrodesis. Orthopedics. 25(5 Suppl):S579–84.

    PubMed  Google Scholar 

  123. Szabo G, Suba Z, Hrabak K, Barabas J, Nemeth Z (2001) Autogenous bone versus beta-tricalcium phosphate graft alone for bilateral sinus elevations (2- and 3-dimensional computed tomographic, histologic, and histomorphometric evaluations): preliminary results. Int. J. Oral. Maxillofac. Implants. 16:681–92.

    CAS  PubMed  Google Scholar 

  124. Muschik M, Ludwig R, Halhubner S, Brursche K, Stoll T (2001) Beta-tricalcium phosphate as a bone substitute for dorsal spinal fusion in adolescent idiopathic scoliosis: preliminary results of a prospective clinical study. Eur. Spine J. 10(Suppl 2):S178–184.

    PubMed Central  PubMed  Google Scholar 

  125. Russotti GM, Okada Y, Fitzgerald RH, Chao EYS, Gorski JP (1987) Efficacy of using a bone graft substitute to enhance biological fixation of a porous metal femoral component, In: The Hip: proceedings of the 15th open scientific meeting of the Hip Society. p. 120–54.

    Google Scholar 

  126. Vedantam R, Ruddlesdin C (1996) The fully hydroxyapatite-coated total hip implant. J. Arthroplasty. 11:534–42.

    CAS  PubMed  Google Scholar 

  127. D’Antonio JA, Capello WN, Manley M (1996) Remodeling of bone around hydroxyapatite-coated femoral stems. J. Bone Joint Surg. Am. 78:1226–34.

    PubMed  Google Scholar 

  128. D’Antonio JA, Capello WN, Jaffe WL (1992) HA-coated implants: multi-center three-year clinical and radiographic results. Clin. Orthop. 285:102–15.

    PubMed  Google Scholar 

  129. D’Antonio JA, Capello WN, Manley MT, Geesink RGT (2001) Hydroxylapatite femoral stems for total hip arthroplasty: 10–13 year follow-up. Clin. Orthop. 393:101–11.

    PubMed  Google Scholar 

  130. Hardy DCR, Frayssinet P, Guilhem A, LaFontaine MA, DeLince PE (1991) Bonding of hydroxyapatitecoated prostheses. Histopathology of specimens from four cases. J. Bone Joint Surg. Br. 73:732–40.

    CAS  Google Scholar 

  131. Bloebaum RD, Merrell M, Gustke K, Simmons M (1991) Retrieval analysis of a hydroxyapatite-coated hip prosthesis. Clin Orthop. 267:97–102.

    PubMed  Google Scholar 

  132. Bauer TW (1993) The histology of HA-coated implants, In: HA Coatings in Orthopaedic Surgery, Geesink, R. and Manley, M., Editors. Raven Press: New York. p. 305–18.

    Google Scholar 

  133. Tonino AJ, Therin M, Doyle C (1999) HA-coated femoral stems. Histology and histomorphometry around five components retrieved at post mortem. J. Bone Joint Surg. Br. 81:148–54..

    CAS  Google Scholar 

  134. Thanner J, Karrholm J, Herberts P, Malchau H (1999) Porous cups with and without hydroxylapatite-tricalcium phosphate coating: 23 matched pairs evaluated with radiostereometry. J. Arthroplasty. 14:266–71.

    CAS  PubMed  Google Scholar 

  135. Epinette JA, Manley MT, D’Antonio JA, Edidin AA, Capello WN (2003) A 10-Year Minimum Follow-Up of Hydroxyapatite-Coated Threaded Cups: Clinical radiographic and survivorship analyses with comparison to the literature. J. Arthroplasty. 18(2): 140–8.

    PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag France

About this chapter

Cite this chapter

Manley, M.T., Sutton, K., Dumbleton, J. (2004). Calcium Phosphates: A Survey of the Orthopaedic Literature. In: Fifteen Years of Clinical Experience with Hydroxyapatite Coatings in Joint Arthroplasty. Springer, Paris. https://doi.org/10.1007/978-2-8178-0851-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0851-2_2

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-00508-4

  • Online ISBN: 978-2-8178-0851-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics