Skip to main content

Reversal of multidrug resistance in hematologic malignancies with chemosensitizers: laboratory and clinical studies

  • Conference paper
Cancer Treatment An Update

Abstract

There has been much recent progress in the understanding of molecular mechanisms of resistance of cancer cells to chemotherapeutic agents. Knowledge of these mechanisms has provided the basis for rational approaches to overcoming or reversing drug resistance and thereby making cancer chemotherapy more effective. In vitro studies with tumor cell lines carried out by Ling in the mid-1970’s suggested that prolonged exposure of the cells to one compound (e.g. Colchicine) could give rise to a multidrug resistant phenotype, with cross resistance to a series of structurally quite different compounds (Ling, 1975). Importantly, Ling’s group established that cell lines exhibiting this form of multidrug resistance (MDR), overexpressed a 170kd Glycoprotein termed the «P- glycoprotein»(P-gp) on tumor cell membranes. Mechanistic studies have established that P-gp functions as a drug-efflux pump, capable of actively transporting a variety of structurally diverse anticancer drugs out of the tumor cell (Beck et al 1979; Gerlach et al 1986; Ling, 1975; Riordan and Ling, 1979). Included in this heterogeneous group of heterocyclic compounds effluxed by P-gp are antitumor antibiotics such as the anthracyclines, mitomycins and actinomycins, and plant alkaloids such as the vincas and the podophyllotoxins. The mechanism of drug resistance associated with MDR expression is considered related to the inability to achieve adequate intracellular cytotoxic drug concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barlogie B, Smith L, Alexanian R (1984) Effective treatment of advanced multiple myeloma refractory to alkylating agents. New Engl J Med 310: 1353–1356

    Article  PubMed  CAS  Google Scholar 

  • Beck WT, Mueller TJ, Tanzer LR (1979) Altered surface membrane glycoproteins in vinca alkaloid resistant leukemic lymphoblasts. Cancer Res 39: 2070–2076

    PubMed  CAS  Google Scholar 

  • Beck WT (1984) Cellular pharmacology of vinca alkaloid resistance and its circumvention. Adv Enz Reg 22: 207–227

    Article  CAS  Google Scholar 

  • Bellamy W, Odeleye A, Finley P et al (1993a) An in vivo model of human multidrug resistant multiple myeloma in SCID mice. Am J Pathol 142: 3

    Google Scholar 

  • Bellamy W, Odeleye A, Finley P et al (1993b) An in vivo model of chemosensitization of multidrug resistant human myeloma cell line in SCID mice. Proc Am Assoc Cancer Res (in press)

    Google Scholar 

  • Boesch D, Gaveriaux C, Jachez B et al (1991) In vivo circumvention of P-glycoprotein mediated multidrug resistance of tumor cells with SDZ PSC 833. Cancer Res 51: 4226–4233

    PubMed  CAS  Google Scholar 

  • Cornwell MM, Safa AR, Felsted RL et al (1986) Membrane vesicles from multidrug resistant human cancer cells contain a specific 150–170 kDa protein detected by photoaffinity labelling. Proc Natl Acad Sci USA 83: 3847–3850

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cornwell MM, Pastan I, Gottesman MM (1987) Certain calcium channel blockers bind specifically to multidrug resistant B carcinoma membrane vesicles and inhibit binding to P-glycoprotein. J Biol Chem 262: 2166–2170

    PubMed  CAS  Google Scholar 

  • Dalton WS, Durie BGM, Alberts DS et al (1986) Characterization of a new drug resistant human myeloma cell line which expresses P-glycoprotein. Cancer Res 46: 5125–5130

    PubMed  CAS  Google Scholar 

  • Dalton WS, Grogan TM, Durie BGM et al (1989a) Drug resistance in multiple myeloma and non-Hodgkin’s lymphoma: Detection of P-glycoprotein and potential circumvention by addition of Verapamil to chemotherapy. J Clin Oncol 7 (4): 415–424

    PubMed  CAS  Google Scholar 

  • Dalton WS, Grogan TM, Rybski JA et al (1989b) Immunohistochemical detection and quantitation of P-glycoprotein in multiple drug-resistant human myeloma cells: Association with level of drug resistance and drug accumulation. Blood 73 (3): 747–752

    PubMed  CAS  Google Scholar 

  • Durie BGM, Dalton, WS (1988) Reversal of drug-resistance in multiple myeloma with Verapamil. Br J Haematol 68: 203–206

    Article  PubMed  CAS  Google Scholar 

  • Fojo AT, Ueda K, Slamon DJ et al (1987a) Expression of a multidrug resistant gene in human tumors and tissues. Proc Natl Acad Sci 84: 265–269

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fojo AT, Shen DW, Mickley LA et al (1987b) Intrinsic drug resistance in human kidney cancer is associated with expression of a human multidrug resistance gene. J Clin Oncol 5: 1922–1927

    PubMed  CAS  Google Scholar 

  • Futscher BW, Blake LL, Grogan TM et al (1992) Submitted for publication Ganapathi R, Grabowski D (1983) Enhancement of sensitivity to Adriamycin in resistant P388 leukemia by the Calmodulin inhibitor Trifluoperazine. Cancer Res 43: 3696–3699

    Google Scholar 

  • Gerlach JH, Kartner N, Bell DR et al (1986) Multidrug resistance. Cancer Surveys 5: 25–46

    PubMed  CAS  Google Scholar 

  • Goldstein LJ, Fojo AT, Ueda K et al (1990) Expression of the Multidrug Resistance, MDR1, Gene in Neuroblastomas. J Clin Onc 8 (1): 128–136

    CAS  Google Scholar 

  • Grogan T, Dalton WS, Rybski J et al (1990) Optimization of immunocytochemical P-glycoprotein assessment in multidrug resistant plasma cell myeloma using three antibodies. Lab Invest 62: 815–824

    Google Scholar 

  • Grogan TM, Spier CM, Salmon SE et al (1993) P-glycoprotein expression in human plasma cell myeloma: correlation with prior chemotherapy. Blood 81: 490–495

    PubMed  CAS  Google Scholar 

  • Harker WG, Slade DL, Dalton WS et al (1989) Multidrug resistance in mitoxantrone-selected HL-60 leukemia cells in the absence of P-glycoprotein overexpression. Cancer Res 49: 4541–4549

    Google Scholar 

  • Keilhauer C, Emling F, Rachbach M et al (1989) The use of R-Verapamil (R-VPM) is superior to racemic VPM in breaking multidrug resistance (MDR) of malignant cells. Proc Am Assoc Cancer Res 30: 503

    Google Scholar 

  • Lehnert M, Dalton WWS, Roe D, Emerson S, Salmon SE (1991) Synergistic inhibition by Verapamil and Quinine of P-glycoprotein-mediated multidrug resistance in a human myeloma cell line model. Blood 77: 348–354

    PubMed  CAS  Google Scholar 

  • Lehnert M, Kunke K, Dalton WS, Roe D, Dorr RT, Salmon SE (1990) In vivo concentration of serum proteins significantly inhibits P-glycoprotein-mediated drug resistance by some chemosensitizers. Proc Am Assoc Cancer Res 31: 2250

    Google Scholar 

  • Ling V (1975) Drug resistance and membrane alterations in mutants of mammalian cells. Can J Genetics Cytol 17: 503–515

    CAS  Google Scholar 

  • List AF, Spier CM, Greer JP et al (1992) Biochemical modulation of Anthracycline resistance in acute leukemia with Cyclosporin-A. Proc Am Soc Clin Oncol 11: 264

    Google Scholar 

  • Miller TP, Grogan TM, Dalton WS et al (1991) P-glycoprotein expression in malignant lymphoma and reversal of clinical drug resistance with chemotherapy plus highdose Verapamil. J Clin Oncol 9: 17–24

    PubMed  CAS  Google Scholar 

  • Pennock GD, Dalton WS, Roeske WR et al (1991) J Natl Cancer Inst 83: 105–110

    Article  PubMed  CAS  Google Scholar 

  • Riordan JR, Ling V (1979) Genetic and biochemical characterization of multidrug resistance. Pharmacol Therapeutics 18: 51–75

    Google Scholar 

  • Salmon SE, Dalton WS, Grogan TM et al (1991) Multidrug-resistant myeloma: laboratory and clinical effects of Verapamil as a chemosensitizer. Blood 78: 44–50

    PubMed  CAS  Google Scholar 

  • Salmon SE, Grogan TM, Miller TP, Dalton WS (1979b) Prediction of Doxorubicin resistance in vitro in myeloma, lymphoma and breast cancer in P-glycoprotein staining. J Natl Cancer Inst 81 (9): 696–701

    Article  Google Scholar 

  • Slater L, Sweet P, Stupecky M et al (1986) Cyclosporin-A reverses vincristine and daunorubicin resistance in acute lymphatic leukemia in vitro. J Clin Invest 77: 1405–1408

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sonneveld P, Durie BGM, Lokhorst HM et al (1992) Modulation of multidrug-resistant multiple myeloma by Cyclosporin. Lancet 340: 255–259

    Article  PubMed  CAS  Google Scholar 

  • Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y (1982). Increased accumulation of Vincristine and adriamycin in drug resistant P388 tumor cells following incubation with calcium antagonists and calmodulin inhibitors. Cancer Res 42: 4730

    PubMed  CAS  Google Scholar 

  • Tsuruo T, Iida H, itatani Y et al (1984) Effects of Quinidine and related compounds on cytotoxicity and cellular accumulation of Vincristine and Adriamycin in drug resistant tumor cells. Cancer Res 44: 4303–4307

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag France

About this paper

Cite this paper

Salmon, S.E., Miller, T.P., List, A.F., Grogan, T.M., Dalton, W.S. (1994). Reversal of multidrug resistance in hematologic malignancies with chemosensitizers: laboratory and clinical studies. In: Banzet, P., Holland, J.F., Khayat, D., Weil, M. (eds) Cancer Treatment An Update. Springer, Paris. https://doi.org/10.1007/978-2-8178-0765-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0765-2_17

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0767-6

  • Online ISBN: 978-2-8178-0765-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics