Skip to main content

In vivo Magnetic Resonance Spectroscopy in neurosciences

  • Chapter
MRI Principles of the Head, Skull Base and Spine
  • 398 Accesses

Abstract

The aim of this chapter is to provide a comprehensive introduction to the new possibilities that Magnetic Resonance Spectroscopy (MRS) offers in clinical neurosciences. Focus will be on what MRS can do rather than what MRS is. For simplicity, basic physical and chemical principles will not be much explored and are referred to elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and suggestions for further reading

General reviews

  1. Novotny E, Ashwal S, Shevell M (1998) Proton magnetic resonance spectroscopy: an emerging technology in pediatric neurology research. Pediatr Res 44 (1): 1–10

    Article  PubMed  CAS  Google Scholar 

  2. Rudkin TM, Arnold DL (1999) Proton magnetic resonance spectroscopy for the diagnosis and management of cerebral disorders. Arch Neurol 56 (8): 919–926

    Article  PubMed  CAS  Google Scholar 

  3. Vion-Dury J, Meyerhoff DJ, Cozzone PJ, Weiner MW (1994) What might be the impact on neurology of the analysis of brain metabolism by in vivo magnetic resonance spectroscopy ? [ed] J Neurol 241 (6): 354–371

    CAS  Google Scholar 

  4. Iles RA, Burns SP (1995) In vitro NMR spectroscopy in the diagnosis and investigation of metabolic disorders. Quart. Magn Res Biol Med 2 (1): 35–42

    CAS  Google Scholar 

  5. Radda GK (1986) The use of NMR spectroscopy for the understanding of disease. Science 233 (4764): 640–645

    Article  PubMed  CAS  Google Scholar 

  6. Gruetter R, Weisdorf SA, Rajanayagan V, Terpstra M, Merkle H, Truwit CL, Garwood M, Nyberg SL, Ugurbil K (1998) Resolution improvements in in vivo 1H NMR spectra with increased magnetic field strength. J Magn Reson 135 (1): 260–264

    Article  PubMed  CAS  Google Scholar 

MR principle

  1. Andrew ER (1990) An introduction to nuclear magnetic resonance in biomedicine. Can Assoc Radiol J 41 (1): 2–7

    PubMed  CAS  Google Scholar 

  2. Hoffenberg EF, Kozlowski P, Salerno TA, Deslauriers R (1996) Evaluation of cardiac 31P magnetic resonance spectroscopy: reviewing NMR principles. J Surg Res 62 (1): 135–143

    Article  PubMed  CAS  Google Scholar 

  3. Woodward P (2000) MRI for technologists. McGraw-Hill, p 432

    Google Scholar 

  4. Mitchell DG (1998) MRI Principles. Saunders, p 288

    Google Scholar 

  5. Longmore DB (1989) The principles of magnetic resonance. Br Med Bull 45 (4): 848–880

    PubMed  CAS  Google Scholar 

  6. Wehrli WF, Shaw D, Kneeland JB (1988) Biomedical magnetic resonance imaging. VCH Publisher, New York, p 601

    Google Scholar 

  7. Gadian DG (1982) Nuclear Magnetic Resonance and its application to living systems. Clarendon, Press Oxford

    Google Scholar 

  8. Slichter CP (1978) Principles of Magnetic Resonance Spectroscopy. Second ed, Springer-Verlag, Berlin

    Google Scholar 

  9. Farrar TC, Becker ED (1971) Pulse and Fourier Transform NMR. Academic Press, New York

    Google Scholar 

Experimental applications

  1. Bollano E, Omerovic E, Bohlooly y M, Kujacic V, Madhu B, Tornell J, Isaksson O, Soussi B, Schulze W, Fu ML, Matejka G, Waagstein F, Isgaard J (2000) Impairment of cardiac function and bioenergetics in adult transgenic mice overexpressing the bovine growth hormone gene. Endocrinology 141 (6): 2229–2235

    CAS  Google Scholar 

  2. Lagerwall K, Daneryd P, Schersten T, Soussi B (1995) In vivo 31P nuclear magnetic resonance evidence of the salvage effect of ascorbate on the postischemic reperfused rat skeletal muscle. Life Sci 56 (6): 389–397

    Article  PubMed  CAS  Google Scholar 

  3. Lagerwall K, Madhu B, Daneryd P, Schersten T, Soussi B (1997) Purine nucleotides and phospholipids in ischemic and reperfused rat skeletal muscle: effect of ascorbate. Am J Physiol 272 (1 Pt 2): H83–90

    PubMed  CAS  Google Scholar 

  4. Lukes D, Madhou B, Arvidsson N, Gustaysson M, Mjornstedt L, Soussi B, Olausson M (1997) In vivo 31P MRS evaluation of the rejection process and differences in anesthetic procedures in a concordant xenotransplantation: mouse heart to rat model. Transplant Proc 29 (7): 3159–3160

    Article  PubMed  CAS  Google Scholar 

  5. Madhu B, Lagerwall K, Soussi B (1996) Phosphorus metabolites in different muscles of the rat leg by 31P image–selected in vivo spectroscopy [published erratum appears in NMR Biomed (1997) 10(6): 302]. NMR Biomed 9 (8): 327–332

    Article  PubMed  CAS  Google Scholar 

  6. Omerovic E, Basetti M, Bollano E, Bohlooly M, Tornell J, Isgaard J, Hjalmarson A, Soussi B, Waagstein F (2000) In vivo metabolic imaging of cardiac bioenergetics in trans-genic mice. Biochem Biophys Res Commun 271 (1): 222–228

    Article  PubMed  CAS  Google Scholar 

  7. Omerovic E, Bollano E, Basetti M, Kujacic V, Waagstein L, Hjalmarson A, Waagstein F, Soussi B (1999) Bioenergetic, functional and morphological consequences of postinfarct cardiac remodeling in the rat. J Mol Cell Cardiol 31 (9): 1685–1695

    Article  PubMed  CAS  Google Scholar 

  8. Sorensen V, Jonsson O, Pettersson S, Schersten T, Soussi B (1998) In vivo 31P NMR OSIRIS of bioenergetic changes in rabbit kidneys during and after ischaemia: effect of pretreatment with an indeno-indole compound. Acta Physiol Scand 162 (4): 495–500

    Article  PubMed  CAS  Google Scholar 

  9. Soussi B, Idstrom JP, Bylund-Fellenius AC, Schersten T (1990) Dynamics of skeletal muscle energetics during ischemia and reperfusion assessed by in vivo 31P NMR. NMR Biomed 3 (2): 71–77

    Article  PubMed  CAS  Google Scholar 

  10. Soussi B, Lagerwall K, Idstrom JP, Schersten T (1993) Purine metabolic pathways in rat hindlimb perfusion model during ischemia and reperfusion. Am J Physiol 265 (4 Pt 2): H1074–1081

    PubMed  CAS  Google Scholar 

  11. Hajek M, Burian M, Dezortova M (2000) Application of LCModel for quality control and quantitative in vivo 1H MR spectroscopy by short echo time STEAM sequence. Magma 10 (1): 6–17

    PubMed  CAS  Google Scholar 

  12. Podo F, Henriksen O, Boyce WM, Leach MO, Leibfritz D, de Certaines JD (1998) Absolute metabolite quantification by in vivo NMR spectroscopy: I. Introduction, objectives and activities of a concerted action in biomedical research. Magn Reson Imaging 16 (9): 1085–1092

    Article  PubMed  CAS  Google Scholar 

  13. Chen W, Adriany G, Zhu XH, Gruetter R, Ugurbil K (1998) Detecting natural abundance carbon signal of NAA metabolite within 12-cm3 localized volume of human brain using 1H-[13C] NMR spectroscopy. Magn Reson Med 40 (2): 180–184

    Article  PubMed  CAS  Google Scholar 

Epilepsy

  1. Duc CO, Trabesinger AH, Weber OM, Meier D, Walder M, Wieser HG, Boesiger P (1998) Quantitative 1H MRS in the evaluation of mesial temporal lobe epilepsy in vivo. Magn Reson Imaging 16 (8): 969–979

    Article  PubMed  CAS  Google Scholar 

  2. Hajek M, Dezortova M, Komarek V (1998) 1H MR spectroscopy in patients with mesial temporal epilepsy. Magma 7(2): 95–114

    PubMed  CAS  Google Scholar 

  3. Rothman DL, Behar KL, Prichard J1/V, Petroff OA (1997) Homocarnosine and the measurement of neuronal pH in patients with epilepsy. Magn Reson Med 38 (6): 924–929

    Article  CAS  Google Scholar 

  4. van der Grond J, Gerson JR, Laxer KD, Hugg JW, Matson GB, Weiner MW (1998) Regional distribution of interictal 31P metabolic changes in patients with temporal lobe epilepsy. Epilepsia 39 (5): 527–536

    Article  PubMed  Google Scholar 

  5. Vainio P, Usenius JP, Vapalahti M, Partanen K, Kalviainen R, Rinne J, Kauppinen RA (1994) Reduced N-acetylaspartate concentration in temporal lobe epilepsy by quantitative 1H MRS in vivo. Neuroreport 5 (14): 1733–1736

    Article  PubMed  CAS  Google Scholar 

Stroke and acute brain injuries

  1. Blamire AM, Graham GD, Rothman DL, Prichard JW (1994) Proton spectroscopy of human stroke: assessment of transverse relaxation times and partial volume effects in single volume steam MRS. Magn Reson Imaging 12 (8): 1227–1235

    Article  PubMed  CAS  Google Scholar 

  2. Ford CC, Griffey RH, Matwiyoff NA, Rosenberg GA (1992) Multivoxel 1H-MRS of stroke. Neurology 42 (7): 1408–1412

    Article  PubMed  CAS  Google Scholar 

  3. Friedman SD, Brooks WM, Jung RE, Chiulli SJ, Sloan JH, Montoya BT, Hart BL, Yeo RA (1999) Quantitative proton MRS predicts outcome after traumatic brain injury. Neurology 52 (7): 1384–1391

    Article  PubMed  CAS  Google Scholar 

  4. Gideon P, Rosenbaum S, Sperling B, Petersen P (1999) MR-visible brain water content in human acute stroke. Magn Reson Imaging 17 (2): 301–304

    Article  PubMed  CAS  Google Scholar 

  5. Holshouser BA, Ashwal S, Shu S, Hinshaw DB Jr (2000) Proton MR spectroscopy in children with acute brain injury: comparison of short and long echo time acquisitions. J Magn Reson Imaging 11 (1): 9–19

    Article  PubMed  CAS  Google Scholar 

  6. Ross BD, Ernst T, Kreis R, Haseler LJ, Bayer S, Danielsen E, Bluml S, Shook T, Mandigo JC, Caton W, Clark C, Jensen SW, Lehman NL, Arcinue E, Pudenz R, Shelden CH (1998) H MRS in acute traumatic brain injury. J Magn Reson Imaging 8(4): 829–840

    Article  Google Scholar 

  7. Wardlaw JM, Marshall I, Wild J, Dennis MS, Cannon J, Lewis SC (1998) Studies of acute ischemic stroke with proton magnetic resonance spectroscopy: relation between time from onset, neurological deficit, metabolite abnormalities in the infarct, blood flow, and clinical outcome. Stroke 29 (8): 1618–1624

    Article  PubMed  CAS  Google Scholar 

Schizophrenia

  1. Keshavan MS, Sanders RD, Pettegrew JW, Dombrowsky SM, Panchalingam KS (1993) Frontal lobe metabolism and cerebral morphology in schizophrenia: 31P MRS and MRI studies. Schizophr Res 10 (3): 241–246

    Article  PubMed  CAS  Google Scholar 

  2. Nasrallah HA, Skinner TE, Schmalbrock P, Robitaille PM (1994) Proton magnetic resonance spectroscopy (1H MRS) of the hippocampal formation in schizophrenia: a pilot study. Br J Psychiatry 165 (4): 481–485

    Article  PubMed  CAS  Google Scholar 

  3. Riehemann S, Volz HP, Smesny S, Hubner G, Wenda B, Rossger G, Sauer H (2000) Phosphorus 31 magnetic resonance spectroscopy in schizophrenia research. Pathophysiology of cerebral metabolism of high-energy phosphate and membrane phospholipids. Nervenarzt 71 (5): 354–363

    Article  PubMed  CAS  Google Scholar 

  4. Sigmundsson T, Maier M, Williams SCR, Simmons A, Greenwood K, Ron MA (1997) Frontal lobe in vivo proton magnetic resonance spectroscopy in schizophrenic patients with negative symptoms. Schizophrenia Research 24 (1–2): 182

    Article  Google Scholar 

Cancer

  1. Castillo M, Kwock L (1999) Clinical applications of proton magnetic resonance spectroscopy in the evaluation of common intracranial tumors. Top Magn Reson Imaging 10 (2): 104–113

    Article  PubMed  CAS  Google Scholar 

  2. Kim SH, Chang KH, Song IC, Han MH, Kim HC, Kang HS, Han MC (1997) Brain abscess and brain tumor: discrimination with in vivo H-1 MR spectroscopy [see comments]. Radiology 204 (1): 239–245

    PubMed  CAS  Google Scholar 

  3. Leach MO (1996) Introduction to in vivo MRS of cancer: new perspectives and open problems. Anticancer Res 16 (3B): 1503–1514

    PubMed  CAS  Google Scholar 

  4. Negendank W, Li CW, Padavic-Shaller K, Murphy-Boesch J, Brown TR (1996) Phospholipid metabolites in 1Hdecoupled 31P MRS in vivo in human cancer: implications for experimental models and clinical studies. Anticancer Res 16 (3B): 1539–1544

    PubMed  CAS  Google Scholar 

  5. Sijens PE, Levendag PC, Vecht CJ, van Dijk P, Oudkerk M (1996) IH MR spectroscopy detection of lipids and lactate in metastatic brain tumors. NMR Biomed 9(2): 65–71

    Article  PubMed  CAS  Google Scholar 

Multiple sclerosis and ALS

  1. Arnold DL, Matthews PM, Francis G, Antel J (1990) Proton magnetic resonance spectroscopy of human brain in vivo in the evaluation of multiple sclerosis: assessment of the load of disease. Magn Reson Med 14 (1): 154–159

    Article  PubMed  CAS  Google Scholar 

  2. Block W, Karitzky J, Traber F, Pohl C, Keller E, Mundegar RR, Lamerichs R, Rink H, Ries F, Schild HH, Jerusalem F (1998) Proton magnetic resonance spectroscopy of the primary motor cortex in patients with motor neuron disease: subgroup analysis and follow-up measurements. Arch Neurol 55 (7): 931–936

    Article  PubMed  CAS  Google Scholar 

  3. Leary SM, Brex PA, MacManus DG, Parker GJ, Barker GJ, Miller DH, Thompson AJ (2000) A (1)H magnetic resonance spectroscopy study of aging in parietal white matter: implications for trials in multiple sclerosis. Magn Reson Imaging 18 (4): 455–459

    Article  PubMed  CAS  Google Scholar 

  4. Rooney WD, Miller RG, Gelinas D, Schuff N, Maudsley AA, Weiner MW (1998) Decreased N-acetylaspartate in motor cortex and corticospinal tract in ALS. Neurology 50 (6): 1800–1805

    Article  PubMed  CAS  Google Scholar 

  5. Sarchielli P, Presciutti O, Tarducci R, Gobbi G, Alberti A, Pelliccioli GP, Orlacchio A, Gallai V (1998) IH-MRS in patients with multiple sclerosis undergoing treatment with interferon beta-la: results of a preliminary study. J Neurol Neurosurg Psychiatry 64(2): 204–212

    Article  PubMed  CAS  Google Scholar 

Encephalommyopathy and metabolic diseases

  1. Soussi B, Schersten T, Waldenstrom A, Ronquist G (1993) Phosphocreatine turnover and pH balance in forearm muscle of patients with syndrome X [letter]. Lancet 341 (8848): 829–830

    Article  PubMed  CAS  Google Scholar 

  2. Ronquist G, Soussi B, Frithz G, Schersten T, Waldenstrom A (1995) Disturbed energy balance in skeletal muscle of patients with untreated primary hypertension. J Intern Med 238 (2): 167–174

    Article  PubMed  CAS  Google Scholar 

  3. Kuhl CK, Layer G, Traber F, Zierz S, Block W, Reiser M (1994) Mitochondrial encephalomyopathy: correlation of P-31 exercise MR spectroscopy with clinical findings. Radiology 192 (1): 223–230

    PubMed  CAS  Google Scholar 

  4. Mathews PM, Andermann F, Silver K, Karpati G, Arnold DL (1993) Proton MR spectroscopic characterization of differences in regional brain metabolic abnormalities in mitochondrial encephalomyopathies. Neurology 43 (12): 2484–2490

    Article  PubMed  CAS  Google Scholar 

Alzheimer’s disease and dementia

  1. Cuenod CA, Kaplan DB, Michot JL, Jehenson P, Leroy-Willig A, Forette F, Syrota A, Boller F (1995) Phospholipid abnormalities in early Alzheimer’s disease. In vivo phosphorus 31 magnetic resonance spectroscopy. Arch Neurol 52 (1): 89–94

    Google Scholar 

  2. Moats RA, Ernst T, Shonk TK, Ross BD (1994) Abnormal cerebral metabolite concentrations in patients with probable Alzheimer disease. Magn Reson Med 32 (1): 110–115

    Article  PubMed  CAS  Google Scholar 

  3. Ross BD, Bluml S, Cowan R, Danielsen E, Farrow N, Gruetter R (1997) In vivo magnetic resonance spectroscopy of human brain: the biophysical basis of dementia. Biophys Chem 68 (1–3): 161–172

    Article  PubMed  CAS  Google Scholar 

  4. Schofield PW, Mosesson RE, Stern Y, Mayeux R (1995) The age at onset of Alzheimer’s disease and an intracranial area measurement. A relationship. Arch Neurol 52 (1): 95–98

    Article  PubMed  CAS  Google Scholar 

  5. Schuff N, Amend D, Ezekiel F, Steinman SK, Tanabe J, Norman D, Jagust W, Kramer JH, Mastrianni JA, Fein G, Weiner MW (1997) Changes of hippocampal N-acetyl aspartate and volume in Alzheimer’s disease. A proton MR spectroscopic imaging and MRI study. Neurology 49 (6): 1513–1521

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag France

About this chapter

Cite this chapter

Soussi, B. (2003). In vivo Magnetic Resonance Spectroscopy in neurosciences. In: MRI Principles of the Head, Skull Base and Spine. Springer, Paris. https://doi.org/10.1007/978-2-8178-0754-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0754-6_2

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0756-0

  • Online ISBN: 978-2-8178-0754-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics