Skip to main content
  • 432 Accesses

Résumé

Stimuler électriquement le cerveau à des fins thérapeutiques est une idée ancienne: les premières tentatives sont attribuées au médecin Scribonius Largus (en l’an 43 après Jésus-Christ) qui proposait de soigner migraines et maux de tête par des chocs électriques produits par l’application de poisson torpille sur le scalp. Au XV e siècle, Paracelsus soulignait l’effet potentiellement curatif du champ magnétique. Au XVIII e siècle, Charles Le Roy expérimente l’effet de stimulations électriques générées parw un fil électrique enroulé en spirale autour de la tête d’un sujet aveugle dans l’objectif de lui rendre la vision. L’objectif ne fut pas atteint, mais cette stimulation permit de générer des phosphènes montrant ainsi qu’une stimulation électrique non-invasive du cerveau pouvait modifier le fonctionnement cérébral transitoirement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Faraday M (1831) On a peculiar class of acoustical figures and on certain forms assumed by groups of particles upon vibrating clastic surfaces. Phil Trans R Soc London 121: 299–340

    Google Scholar 

  2. d’Arsonval M A (1896) Dispositifs pour la mesure des courants alternatifs de toutes fréquences. Comptes Rendus 3: 450–1

    Google Scholar 

  3. Thompson SP (1910) A physiological effect of an alternating magnetic field. Proc. R. Soc. (Biol.) 82: 396–8

    Google Scholar 

  4. Magnusson CE, Stevens HC (1911) Visual sensations created by a magnetic field. Am J Physiol 29:124–136

    Google Scholar 

  5. Barker A, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1: 1106–7

    PubMed  CAS  Google Scholar 

  6. Lefaucheur JP, André-Obadia N, Poulet E, et al. (2011) French guidelines on the use of repetitive transcranial magnetic stimulation (rTMS). Neurophysiol Clin 41(5): 221–95

    PubMed  Google Scholar 

  7. Huang MX, Lee RR, Miller GA, et al. (2005) A parietal-frontal network studied by somatosensory oddball MEG responses, and its cross-modal consistency. Neuroimage 28: 99–114

    PubMed  Google Scholar 

  8. Mayberg et al. (2003) Positron emission tomography imaging in depression: a neural systems perspective. Neuroimaging Clin N Am 13(4): 805–15. Review

    PubMed  Google Scholar 

  9. Savitz JB, Drevets WC (2009) Imaging phenotypes of major depressive disorder: genetic correlates. Neuroscience 164(1): 300–30. Review

    PubMed Central  PubMed  CAS  Google Scholar 

  10. Höflich G, Kasper S, Hufnagel A, et al. (1993) Application of transcranial magnetic stimulation in treatment of drug-resistant major depression: a report of two cases. Human Psychopharmacology 8: 361–5

    Google Scholar 

  11. George MS, Wassermann EM, Williams WA, et al. (1995) Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. Neuroreport 6: 1853–6

    PubMed  CAS  Google Scholar 

  12. Pascual-Leone A, Rubio B, Pallardo F, Catala MD (1996) Beneficial effect of rapid-rate transcranial magnetic stimulation of the left dorso-lateral prefrontal cortex in drug-resistant depression. Lancet 348: 233–8

    PubMed  CAS  Google Scholar 

  13. Rossi S, De Capua A, Tavanti M, et al. (2009) Dysfunctions of cortical excitability in drug-naive posttraumatic stress disorder patients. Biol Psychiatry 66: 54–61

    PubMed  CAS  Google Scholar 

  14. Fleischmann A, Sternheim A, et al. (1996) Transcranial magnetic stimulation downregulates beta-adrenoreceptors in rat cortex. J Neural Transm 103(11): 1361–6

    PubMed  CAS  Google Scholar 

  15. Post A, Keck ME (2001) Transcranial magnetic stimulation as a therapeutic tool in psychiatry: what do we know about the neurobiological mechanisms? J Psychiatr Res 35(4): 193–215

    PubMed  CAS  Google Scholar 

  16. Ben-Shachar D, Belmaker RH, et al. (1997) Transcranial magnetic stimulation induces alterations in brain monoamines. J Neural Transm 104(2–3): 191–7

    PubMed  CAS  Google Scholar 

  17. Levkovitz Y, Marx J, et al. (1999) Long-term effects of transcranial magnetic stimulation on hippocampal reactivity to afferent stimulation. J Neurosci 19(8): 3198–203

    PubMed  CAS  Google Scholar 

  18. Levkovitz Y, Grisaru N, et al. (2001) Transcranial magnetic stimulation and antidepressive drugs share similar cellular effects in rat hippocampus. Neuropsychopharmacology 24(6): 608–16

    PubMed  CAS  Google Scholar 

  19. Kanno M, Matsumoto M, et al. (2003) Effects of repetitive transcranial magnetic stimulation on behavioral and neurochemical changes in rats during an elevated plus-maze test. J Neurol Sci 211(1–2): 5–14

    PubMed  CAS  Google Scholar 

  20. Kole MH, Fuchs E, et al. (1999) Changes in 5-HT1A and NMDA binding sites by a single rapid transcranial magnetic stimulation procedure in rats. Brain Res 826(2): 309–12

    PubMed  CAS  Google Scholar 

  21. Gur E, Lerer B, et al. (2000) Chronic repetitive transcranial magnetic stimulation induces subsensitivity of presynaptic serotonergic autoreceptor activity in rat brain. Neuroreport 11(13): 2925–9

    PubMed  CAS  Google Scholar 

  22. Gur E, Lerer B, et al. (2004) Chronic rTMS induces subsensitivity of post-synaptic 5-HT1A receptors in rat hypothalamus. Int J Neuropsychopharmacol 7(3): 335–40

    PubMed  CAS  Google Scholar 

  23. Ben-Shachar D, Gazawi H, et al. (1999) Chronic repetitive transcranial magnetic stimulation alters beta-adrenergic and 5-HT2 receptor characteristics in rat brain. Brain Res 816(1): 78–83

    PubMed  CAS  Google Scholar 

  24. Roman A, Vetulani J, et al. (2002) Effect of combined treatment with paroxetine and transcranial magnetic stimulation (TMS) on the mitogen-induced proliferative response of rat lymphocytes. Pol J Pharmacol 54(6): 633–9

    PubMed  CAS  Google Scholar 

  25. Kiss JZ (1988) Dynamism of chemoarchitecture in the hypothalamic paraventricular nucleus. Brain Res Bull 20(6): 699–708

    PubMed  CAS  Google Scholar 

  26. Keck ME, Sillaber I, et al. (2000) Acute transcranial magnetic stimulation of frontal brain regions selectively modulates the release of vasopressin, biogenic amines and amino acids in the rat brain. Eur J Neurosci 12(10): 3713–20

    PubMed  CAS  Google Scholar 

  27. Zangen A, Hyodo K (2002) Transcranial magnetic stimulation induces increases in extracellular levels of dopamine and glutamate in the nucleus accumbens. Neuroreport 13(18): 2401–5

    PubMed  CAS  Google Scholar 

  28. Michael N, Gosling M, et al. (2003) Metabolic changes after repetitive transcranial magnetic stimulation (rTMS) of the left prefrontal cortex: a sham-controlled proton magnetic resonance spectroscopy (1H MRS) study of healthy brain. Eur J Neurosci 17(11): 2462–8

    PubMed  Google Scholar 

  29. Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 129(Pt7): 1659–73

    PubMed  CAS  Google Scholar 

  30. Ji RR, Schlaepfer TE, et al. (1998) Repetitive transcranial magnetic stimulation activates specific regions in rat brain. Proc Natl Acad Sci USA 95(26): 15635–40

    PubMed Central  PubMed  CAS  Google Scholar 

  31. Hausmann A, Weis C, et al. (2000) Chronic repetitive transcranial magnetic stimulation enhances c-fos in the parietal cortex and hippocampus. Brain Res Mol Brain Res 76(2): 355–62

    PubMed  CAS  Google Scholar 

  32. Lisanby SH, Belmaker RH (2000) Animal models of the mechanisms of action of repetitive transcranial magnetic stimulation (RTMS): comparisons with electroconvulsive shock (ECS). Depress Anxiety 12(3): 178–87

    PubMed  CAS  Google Scholar 

  33. Padberg F, Moller HJ (2003) Repetitive transcranial magnetic stimulation: does it have potential in the treatment of depression? CNS Drugs 17(6): 383–403

    PubMed  Google Scholar 

  34. Arias-Carrion O (2008) Basic mechanisms of rTMS: Implications in Parkinson’s disease. Int Arch Med 1(1): 2

    PubMed Central  PubMed  Google Scholar 

  35. Yuan TF, Arias-Carrion O (2008) Locally induced neural stem cells/ pluripotent stem cells for in vivo cell replacement therapy. Int Arch Med 1(1): 17

    PubMed Central  PubMed  Google Scholar 

  36. Ugawa Y, Okabe S, et al. (2006) Repetitive transcranial magnetic stimulation (rTMS) in monkeys. Suppl Clin Neurophysiol 59: 173–81

    PubMed  Google Scholar 

  37. Weissman JD, Epstein CM, et al. (1992) Magnetic brain stimulation and brain size: relevance to animal studies. Electroencephalogr Clin Neurophysiol 85(3): 215–9

    PubMed  CAS  Google Scholar 

  38. Lang UE, Bajbouj M, et al. (2006) Brain-derived neurotrophic factor serum concentrations in depressive patients during vagus nerve stimulation and repetitive transcranial magnetic stimulation. Psychopharmacology (Berl) 187(1): 56–9

    CAS  Google Scholar 

  39. Zanardini R, Gazzoli A, et al. (2006) Effect of repetitive transcranial magnetic stimulation on serum brain derived neurotrophic factor in drug resistant depressed patients. J Affect Disord 91(1): 83–6

    PubMed  CAS  Google Scholar 

  40. Lang UE, Hellweg R, et al. (2008) Acute prefrontal cortex transcranial magnetic stimulation in healthy volunteers: no effects on brain-derived neurotrophic factor (BDNF) concentrations in serum. J Affect Disord 107(1–3): 255–8

    PubMed  CAS  Google Scholar 

  41. O’Reardon JP, Cristancho P, et al. (2007) Patients with a major depressive episode responding to treatment with repetitive transcranial magnetic stimulation (rTMS) are resistant to the effects of rapid tryptophan depletion. Depress Anxiety 24(8): 537–44

    Google Scholar 

  42. Cassidy F, Murry E, et al. (1997) Lack of relapse with tryptophan depletion following successful treatment with ECT. Am J Psychiatry 154(8): 1151–2

    PubMed  CAS  Google Scholar 

  43. Sibon I, Strafella AP, et al. (2007) Acute prefrontal cortex TMS in healthy volunteers: effects on brain 11C-alphaMtrp trapping. Neuroimage 34(4): 1658–64

    PubMed  CAS  Google Scholar 

  44. Zanardi R, Magri L, et al. (2007) Role of serotonergic gene polymorphisms on response to transcranial magnetic stimulation in depression. Eur Neuropsychopharmacol 17(10): 651–7

    PubMed  CAS  Google Scholar 

  45. Lemonde S, Du L, et al. (2004) Association of the C(-1019)G 5-HT1A functional promoter polymorphism with antidepressant response. Int J Neuropsychopharmacol 7(4): 501–6

    PubMed  CAS  Google Scholar 

  46. Purba JS, Hoogendijk WJ, et al. (1996) Increased number of vasopressin-and oxytocin-expressing neurons in the paraventricular nucleus of the hypothalamus in depression. Arch Gen Psychiatry 53(2): 137–43

    PubMed  CAS  Google Scholar 

  47. Fitzgerald PB, Fountain S, et al. (2006) A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin Neurophysiol 117(12): 2584–96

    PubMed  Google Scholar 

  48. Hoogendam JM, Ramakers GM, et al. (2010) Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul 3(2): 95–118

    PubMed  Google Scholar 

  49. Funke K, Benali A (2011) Modulation of cortical inhibition by rTMS — findings obtained from animal models. J Physiol 589(Pt18): 4423–35

    PubMed Central  PubMed  CAS  Google Scholar 

  50. Pell GS, Roth Y, et al. (2011) Modulation of cortical excitability induced by repetitive transcranial magnetic stimulation: influence of timing and geometrical parameters and underlying mechanisms. Prog Neurobiol 93(1): 59–98

    PubMed  Google Scholar 

  51. Ogiue-Ikeda M, Kawato S, et al. (2003) The effect of repetitive transcranial magnetic stimulation on long-term potentiation in rat hippocampus depends on stimulus intensity. Brain Res 993(1–2): 222–6

    PubMed  CAS  Google Scholar 

  52. Aydin-Abidin S, Trippe J, et al. (2008) High-and low-frequency repetitive transcranial magnetic stimulation differentially activates c-Fos and zif268 protein expression in the rat brain. Exp Brain Res 188(2): 249–61

    PubMed  CAS  Google Scholar 

  53. Gloor P, Fariello RG (1988) Generalized epilepsy: some of its cellular mechanisms differ from those of focal epilepsy. Trends Neurosci 11(2): 63–8

    PubMed  CAS  Google Scholar 

  54. Steriade M (1993) Sleep oscillations in corticothalamic neuronal networks and their development into self-sustained paroxysmal activity. Rom J Neurol Psychiatry 31(3–4): 151–61

    PubMed  CAS  Google Scholar 

  55. McCormick DA, Contreras D (2001) On the cellular and network bases of epileptic seizures. Annu Rev Physiol 63: 815–46

    PubMed  CAS  Google Scholar 

  56. Pinault D, Vergnes M, et al. (2001) Medium-voltage 5–9-Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons. Neuroscience 105(1): 181–201

    PubMed  CAS  Google Scholar 

  57. Pinault D (2003) Cellular interactions in the rat somatosensory thalamocortical system during normal and epileptic 5–9 Hz oscillations. J Physiol 552(Pt3): 881–905

    PubMed Central  PubMed  CAS  Google Scholar 

  58. Meeren HK, Pijn JP, et al. (2002) Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci 22(4): 1480–95

    PubMed  CAS  Google Scholar 

  59. Holmes GL (2004) Models for generalized seizures. Suppl Clin Neurophysiol 57: 415–24

    PubMed  Google Scholar 

  60. Buzsaki G, Masliah E, et al. (1991) Hippocampal grafts into the intact brain induce epileptic patterns. Brain Res 554(1–2): 30–7

    PubMed  CAS  Google Scholar 

  61. Gloor P (1968) Generalized cortico-reticular epilepsies. Some considerations on the pathophysiology of generalized bilaterally synchronous spike and wave discharge. Epilepsia 9(3): 249–63

    PubMed  CAS  Google Scholar 

  62. Bancaud J, Talairach J, et al. (1969) Activation by Megimide in the topographic diagnosis of focal cortical epilepsies (clinical EEG and SEEG study). Electroencephalogr Clin Neurophysiol 26(6): 640

    PubMed  CAS  Google Scholar 

  63. Zheng TW, O’Brien TJ, Morris MJ et al. (2012) Rhythmic neuronal activity in S2 somatosensory and insular cortices contribute to the initiation of absence-related spike-and-wave discharges. Epilepsia 53(11): 1948–58

    PubMed  Google Scholar 

  64. Hoppner J, Schulz M, et al. (2003) Antidepressant efficacy of two different rTMS procedures. High frequency over left versus low frequency over right prefrontal cortex compared with sham stimulation. Eur Arch Psychiatry Clin Neurosci 253(2): 103–9

    PubMed  Google Scholar 

  65. Baeken C, De Raedt R, et al. (2010) HF-rTMS treatment decreases psychomotor retardation in medication-resistant melancholic depression. Prog Neuropsychopharmacol Biol Psychiatry 34(4): 684–7

    PubMed  CAS  Google Scholar 

  66. Siebner HR, Takano B, et al. (2001) Continuous transcranial magnetic stimulation during positron emission tomography: a suitable tool for imaging regional excitability of the human cortex. Neuroimage 14(4): 883–90

    PubMed  CAS  Google Scholar 

  67. Takano B, Drzezga A, et al. (2004) Short-term modulation of regional excitability and blood flow in human motor cortex following rapid-rate transcranial magnetic stimulation. Neuroimage 23(3): 849–59

    PubMed  Google Scholar 

  68. Speer AM, Kimbrell TA, et al. (2000) Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients. Biol Psychiatry 48(12): 1133–41

    PubMed  CAS  Google Scholar 

  69. Sole-Padulles C, Bartres-Faz D, et al. (2006) Repetitive transcranial magnetic stimulation effects on brain function and cognition among elders with memory dysfunction. A randomized sham-controlled study. Cereb Cortex 16(10): 1487–93

    PubMed  Google Scholar 

  70. Croarkin PE, Levinson AJ, Daskalakis ZJ (2011) Evidence for GAB-Aergic inhibitory deficits in major depressive disorder. Neuroscience & Biobehavioral Reviews 35(3): 818–25

    CAS  Google Scholar 

  71. Kujirai T, Caramia MD, Rothwell JC, et al. (1993) Corticocortical inhibition in human motor cortex. Journal of Physiology 471: 501–19

    PubMed Central  PubMed  CAS  Google Scholar 

  72. Maeda F, Pascual-Leone A (2003) Transcranial magnetic stimulation: studying motor neurophysiology of psychiatric disorders. Psychopharmacology 168(4): 359–76

    PubMed  CAS  Google Scholar 

  73. Hanajima R, Ugawa Y (2008) Paired-pulse measures. In: Wassermann EM, Epstein CM, Ziemann U, Walsh V, Paus T, Lisanby SH (Eds), The Oxford Handbook of Transcranial Stimulation (pp. 103–17). Oxford: Oxford University Press

    Google Scholar 

  74. Orth M, Rothwell JC (2004) The cortical silent period: intrinsic variability and relation to the waveform of the transcranial magnetic stimulation pulse. Clinical Neurophysiology 115: 1076–82

    PubMed  CAS  Google Scholar 

  75. Mardsen CD, Merton PA, Morton HB (1983) Direct electrical stimulation of corticospinal pathways through the intact scalp in human subjects. Advances in Neurology 39: 387–91

    Google Scholar 

  76. Daskalakis ZJ, Chen R (2008) Evaluating the interaction between cortical inhibitory and excitatory circuits measured by TMS. In: Wassermann EM, Epstein CM, Ziemann U, Walsh V, Paus T, Lisanby SH (Eds), The Oxford Handbook of Transcranial Stimulation (pp. 119–32). Oxford: Oxford University Press

    Google Scholar 

  77. Siebner HR, Dressnandt J, Auer C, Conrad B (1998) Continuous intrathecal baclofen infusions induced a marked increase of the transcranially evoked silent period in a patient with generalized dystonia. Muscle Nerve 21: 1209–12

    PubMed  CAS  Google Scholar 

  78. Radhu N et al. (2013) A meta-analysis of cortical inhibition and excitability using transcranial magnetic stimulation in psychiatric disorders. Clin Neurophysiol, http://dx.doi.org/10.1016/j.clinph.2013.01.014

    Google Scholar 

  79. Levinson AJ, Fitzgerald PB, Favalli G, et al. (2010) Evidence of Cortical Inhibitory Deficits in Major Depressive Disorder. Biological Psychiatry 67(5): 458–64

    PubMed  CAS  Google Scholar 

  80. Ilmoniemi RJ, Kicic D (2010) Methodology for combined TMS and EEG. Brain Topogr 22: 233–48

    PubMed Central  PubMed  Google Scholar 

  81. Ilmoniemi RJ, Virtanen J, Ruohonen J, et al. (1997) Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport 8: 3537–40

    PubMed  CAS  Google Scholar 

  82. Komssi S, Kahkonen S, Ilmoniemi RJ (2004) The effect of stimulus intensity on brain responses evoked by transcranial magnetic stimulation. Hum Brain Mapp 21: 154–64

    PubMed  Google Scholar 

  83. Maki H, Ilmoniemi RJ (2010) EEG oscillations and magnetically evoked motor potentials reflect motor system excitability in overlapping neuronal populations. Clin Neurophysiol 121: 492–501

    PubMed  Google Scholar 

  84. Schutter DJ, Hortensius R (2011) Brain oscillations and frequency-dependent modulation of cortical excitability. Brain Stimul 4: 97–103

    PubMed  Google Scholar 

  85. Brown JT, Davies CH, Randall AD (2007) Synaptic activation of GAB-A(B) receptors regulates neuronal network activity and entrainment. Eur J Neurosci 25: 2982–90

    PubMed  Google Scholar 

  86. Leung LS, Shen B (2007) GABAB receptor blockade enhances theta and gamma rhythms in the hippocampus of behavingrats. Hippocampus 17: 281–91

    PubMed  CAS  Google Scholar 

  87. Farzan F, Barr MS, Levinson AJ, et al. (2010) Evidence for gamma inhibition deficits in the dorsolateral prefrontal cortex of patients with schizophrenia. Brain 133: 1505–14

    PubMed  Google Scholar 

  88. Begic D, Popovic-Knapic V, Grubisin J, et al. (2011) Quantitative electroencephalography in schizophrenia and depression. Psychiatr Danub 23(4): 355–62

    PubMed  Google Scholar 

  89. Coburn KL, Lauterbach EC, Boutros NN, et al. (2006) The value of quantitative electroencephalography in clinical psychiatry: a report by the committee on research of the american neuropsychiatric association. The Journal of Neuropsychiatry and Clinical Neurosciences 18: 460–500

    PubMed  Google Scholar 

  90. Debener S, Beauducel A, Nessler D, et al. (2000) Is resting anterior EEG alpha asymmetry a trait marker for depression? Findings for healthy adults and clinically depressed patients. Neuropsychobiology 41(1): 31–7

    PubMed  CAS  Google Scholar 

  91. Allen JJ, Urry HL, Hitt SK, Coan JA (2004) The stability of resting frontal electroencephalographic asymmetry in depression. Psychophysiology 41(2): 269–80

    PubMed  Google Scholar 

  92. Vuga M, Fox NA, Cohn JF, et al. (2006) Long-term stability of frontal electroencephalographic asymmetry in adults with a history of depression and controls. Int J Psychophysiol 59(2): 107–15

    PubMed  Google Scholar 

  93. Ulrich G, Renfordt E, Zeller G, Frick K (1984) Interrelation between changes in the EEG and psychopathology under pharmacotherapy for endogenous depression. a contribution to the predictor question. Pharmacopsychiatry 17(6): 178–83

    PubMed  CAS  Google Scholar 

  94. Knott V, Telner JI, Lapierre YD, et al. (1996) Quantitative EEG in the prediction of antidepressant response to imipramine. Journal of Affective Disorders 39(3): 175–84

    PubMed  CAS  Google Scholar 

  95. Bruder GE, Stewart JW, Tenke CE, et al. (2001) Electroencephalographic and perceptual asymmetry differences between responders and nonresponders to an SSRI antidepressant. Biological Psychiatry 49(5): 416–25

    PubMed  CAS  Google Scholar 

  96. Bruder GE, Sedoruk JP, Stewart JW, et al. (2008) Electroencephalographic alpha measures predict therapeutic response to a selective serotonin reuptake inhibitor antidepressant: Pre-and post-treatment findings. Biological Psychiatry, 63(12): 1171–7

    Google Scholar 

  97. Tenke CE, Kayser J, Manna, CG, et al. (2011) Current source density measures of electroencephalographic alpha predict antidepressant treatment response. Biological Psychiatry 70(4): 388–94

    PubMed Central  PubMed  CAS  Google Scholar 

  98. Micoulaud-Franchi JA, Richieri R, Cermolacce M (2012) Parieto-temporal alpha EEG band power at baseline as a predictor of antidepressant treatment response with repetitive transcranial magnetic stimulation: A preliminary study. Journal of Affective Disorders 137(13): 156–60

    PubMed  CAS  Google Scholar 

  99. Paus T, Sipila PK, Strafella AP (2001) Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study. J Neurophysiol 86(4): 1983–90

    PubMed  CAS  Google Scholar 

  100. Fuggetta G, Fiaschi A, Manganotti P (2005) Modulation of cortical oscillatory activities induced by varying single-pulse transcranial magnetic stimulation intensity over the left primary motor area: A combined EEG and TMS study. NeuroImage 27(4): 896–908

    PubMed  Google Scholar 

  101. Fuggetta G, Pavone EF, Fiaschi A, Manganotti P (2008) Acute modulation of cortical oscillatory activities during short trains of high-frequency repetitive transcranial magnetic stimulation of the human motor cortex: A combined eeg and tms study. Human Brain Mapping 29: 1–13

    PubMed  Google Scholar 

  102. Fuggetta G, Noh NA (2013) A neurophysiological insight into the potential link between transcranial magnetic stimulation, thalamocortical dysrhythmia and neuropsychiatric disorders. Experimental Neurology 245: 87–95

    PubMed  Google Scholar 

  103. Leuchter AF, Cook IA, Jin Y, Phillips B (2013) The relationship between brain oscillatory activity and therapeutic effectiveness of transcranial magnetic stimulation in the treatment of major depressive disorder. Frontiers in Human Neuroscience 7: 37

    PubMed Central  PubMed  Google Scholar 

  104. Kimbrell TA, Little JT, et al. (1999) Frequency dependence of antidepressant response to left prefrontal repetitive transcranial magnetic stimulation (rTMS) as a function of baseline cerebral glucose metabolism. Biol Psychiatry 46(12): 1603–13

    PubMed  CAS  Google Scholar 

  105. Post RM, Speer AM, et al. (2000) Seizure models: anticonvulsant effects of ECT and rTMS. Prog Neuropsychopharmacol Biol Psychiatry 24(8): 1251–73

    PubMed  CAS  Google Scholar 

  106. Mottaghy FM, Keller CE, et al. (2002) Correlation of cerebral blood flow and treatment effects of repetitive transcranial magnetic stimulation in depressed patients. Psychiatry Res 115(1–2): 1–14

    PubMed  Google Scholar 

  107. Herwig U, Lampe Y, et al. (2003) Add-on rTMS for treatment of depression: a pilot study using stereotaxic coil-navigation according to PET data. J Psychiatr Res 37(4): 267–75

    PubMed  Google Scholar 

  108. Garcia-Toro M, Salva J, et al. (2006) High (20-Hz) and low (1-Hz) frequency transcranial magnetic stimulation as adjuvant treatment in medication-resistant depression. Psychiatry Res 146(1): 53–7

    PubMed  Google Scholar 

  109. Teneback CC, Nahas Z, et al. (1999) Changes in prefrontal cortex and paralimbic activity in depression following two weeks of daily left prefrontal TMS. J Neuropsychiatry Clin Neurosci 11(4): 426–35

    PubMed  CAS  Google Scholar 

  110. Nadeau SE, McCoy KJ, et al. (2002) Cerebral blood flow changes in depressed patients after treatment with repetitive transcranial magnetic stimulation: evidence of individual variability. Neuropsychiatry Neuropsychol Behav Neurol 15(3): 159–75

    PubMed  Google Scholar 

  111. Siebner HR, Peller M, et al. (2001) Activation of frontal premotor areas during suprathreshold transcranial magnetic stimulation of the left primary sensorimotor cortex: a glucose metabolic PET study. Hum Brain Mapp 12(3): 157–67

    PubMed  CAS  Google Scholar 

  112. Siebner HR, Peller M, et al. (2000) Lasting cortical activation after repetitive TMS of the motor cortex: a glucose metabolic study. Neurology 54(4): 956–63

    PubMed  CAS  Google Scholar 

  113. Siebner HR, Willoch F, et al. (1998) Imaging brain activation induced by long trains of repetitive transcranial magnetic stimulation. Neuroreport 9(5): 943–8

    PubMed  CAS  Google Scholar 

  114. Oliviero A, Di Lazzaro V, et al. (1999) Cerebral blood flow and metabolic changes produced by repetitive magnetic brain stimulation. J Neurol 246(12): 1164–8

    PubMed  CAS  Google Scholar 

  115. Catafau AM, Perez V, et al. (2001) SPECT mapping of cerebral activity changes induced by repetitive transcranial magnetic stimulation in depressed patients. A pilot study. Psychiatry Res 106(3): 151–60

    CAS  Google Scholar 

  116. Loo CK, Mitchell PB, et al. (2003) Double-blind controlled investigation of bilateral prefrontal transcranial magnetic stimulation for the treatment of resistant major depression. Psychol Med 33(1): 33–40

    PubMed  CAS  Google Scholar 

  117. Knoch D, Treyer V, et al. (2006) Lateralized and frequency-dependent effects of prefrontal rTMS on regional cerebral blood flow. Neuroimage 31(2): 641–8

    PubMed  CAS  Google Scholar 

  118. Paus T, Jech R, et al. (1998) Dose-dependent reduction of cerebral blood flow during rapid-rate transcranial magnetic stimulation of the human sensorimotor cortex. J Neurophysiol 79(2): 1102–7

    PubMed  CAS  Google Scholar 

  119. Grafman J, Pascual-Leone A, et al. (1994). “Induction of a recall deficit by rapid-rate transcranial magnetic stimulation.” Neuroreport 5(9): 1157–1160.

    PubMed  CAS  Google Scholar 

  120. Chokroverty, S., W. Hening, et al. (1995) Magnetic brain stimulation: safety studies. Electroencephalogr Clin Neurophysiol 97(1): 36–42

    PubMed  CAS  Google Scholar 

  121. Skrdlantova L, Horacek J, et al. (2005) The influence of low-frequency left prefrontal repetitive transcranial magnetic stimulation on memory for words but not for faces. Physiol Res 54(1): 123–8

    PubMed  CAS  Google Scholar 

  122. Claus D, Foerster A, et al. (1999) High-rate transcranial magnetic stimulation: influence on short-term-memory, heart rate and blood pressure changes. Electroencephalogr Clin Neurophysiol Suppl 50: 408–12

    PubMed  CAS  Google Scholar 

  123. Flitman SS, Grafman J, et al. (1998) Linguistic processing during repetitive transcranial magnetic stimulation. Neurology 50(1): 175–81

    PubMed  CAS  Google Scholar 

  124. Hoffman RE, Gueorguieva R, et al. (2005) Temporoparietal transcranial magnetic stimulation for auditory hallucinations: safety, efficacy and moderators in a fifty patient sample. Biol Psychiatry 58(2): 97–104

    PubMed  Google Scholar 

  125. Bermpohl F, Fregni F, et al. (2006) Effect of low-frequency transcranial magnetic stimulation on an affective go/no-go task in patients with major depression: role of stimulation site and depression severity. Psychiatry Res 141(1): 1–13

    PubMed  Google Scholar 

  126. Boroojerdi B, Phipps M, et al. (2001) Enhancing analogic reasoning with rTMS over the left prefrontal cortex. Neurology 56(4): 526–8

    PubMed  CAS  Google Scholar 

  127. O’Connor MG, Jerskey BA, et al. (2005) The effects of repetitive transcranial magnetic stimulation (rTMS) on procedural memory and dysphoric mood in patients with major depressive disorder. Cogn Behav Neurol 18(4): 223–7

    Google Scholar 

  128. Moser DJ, Jorge RE, et al. (2002) Improved executive functioning following repetitive transcranial magnetic stimulation. Neurology 58(8): 1288–90

    PubMed  CAS  Google Scholar 

  129. Little JT, Kimbrell TA, et al. (2000) Cognitive effects of 1-and 20-hertz repetitive transcranial magnetic stimulation in depression: preliminary report. Neuropsychiatry Neuropsychol Behav Neurol 13(2): 119–24

    PubMed  CAS  Google Scholar 

  130. Epstein CM, Evatt ML, et al. (2007) An open study of repetitive transcranial magnetic stimulation in treatment-resistant depression with Parkinson’s disease. Clin Neurophysiol 118(10): 2189–94

    PubMed Central  PubMed  Google Scholar 

  131. Martis B, Alam D, et al. (2003) Neurocognitive effects of repetitive transcranial magnetic stimulation in severe major depression. Clin Neurophysiol 114(6): 1125–32

    PubMed  Google Scholar 

  132. Fregni F, Santos CM, et al. (2004) Repetitive transcranial magnetic stimulation is as effective as fluoxetine in the treatment of depression in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 75(8): 1171–4

    PubMed Central  PubMed  CAS  Google Scholar 

  133. Speer MA, Repella JD, et al. (2001) Lack of adverse cognitive effects of 1Hz and 20Hz repetitive transcranial magnetic stimulation at 100% of motor threshold over left prefrontal cortex in depression. J ECT 17(4): 259–63

    PubMed  CAS  Google Scholar 

  134. Cotelli M, Manenti R, et al. (2006) Effect of transcranial magnetic stimulation on action naming in patients with Alzheimer disease. Arch Neurol 63(11): 1602–4

    PubMed  Google Scholar 

  135. Cotelli M, Manenti R, et al. (2008) Transcranial magnetic stimulation improves naming in Alzheimer disease patients at different stages of cognitive decline. Eur J Neurol 15(12): 1286–92

    PubMed  CAS  Google Scholar 

  136. Grady CL, McIntosh AR, et al. (2003) Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer’s disease. J Neurosci 23(3): 986–93

    PubMed  CAS  Google Scholar 

  137. Levy-Cooperman N, Burhan AM, et al. (2008) Frontal lobe hypoperfusion and depressive symptoms in Alzheimer disease. J Psychiatry Neurosci 33(3): 218–26

    PubMed Central  PubMed  Google Scholar 

  138. Manenti R, Cappa SF, et al. (2008) The role of the prefrontal cortex in sentence comprehension: an rTMS study. Cortex 44(3): 337–44

    PubMed  Google Scholar 

  139. Aleman A, van’t Wout M (2008) Repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex disrupts digit span task performance. Neuropsychobiology 57(1–2): 44–8

    PubMed  Google Scholar 

  140. Devi G (2011) Study of the effect of repetitive transcranial magnetic stimulation on language in patients with Alzheimer’s disease NCT00814697.

    Google Scholar 

  141. Haffen E, Chopard G, et al. (2011) A case report of daily left prefrontal repetitive transcranial magnetic stimulation (rTMS) as an adjunctive treatment for Alzheimer disease. Brain Stimul 5(3): 264–6

    PubMed  Google Scholar 

  142. Eschweiler GW, Wegerer C, et al. (2000) Left prefrontal activation predicts therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) in major depression. Psychiatry Res 99(3): 161–72

    PubMed  CAS  Google Scholar 

  143. Michelucci R, Valzania F, et al. (1994) Rapid-rate transcranial magnetic stimulation and hemispheric language dominance: usefulness and safety in epilepsy. Neurology 44(9): 1697–700

    PubMed  CAS  Google Scholar 

  144. Stewart L Walsh V, et al. (2001) TMS produces two dissociable types of speech disruption. Neuroimage 13(3): 472–8

    PubMed  CAS  Google Scholar 

  145. Reniers RL, Corcoran R, et al. (2012) Moral decision-making, ToM, empathy and the default mode network. Biol Psychol 90(3): 202–10

    PubMed  Google Scholar 

  146. Philiastides MG, Auksztulewicz R, et al. (2011) Causal role of dorsolateral prefrontal cortex in human perceptual decision making. Curr Biol 21(11): 980–3

    PubMed  CAS  Google Scholar 

  147. Tassy S, Oullier O, et al. (2012) Disrupting the right prefrontal cortex alters moral judgement. Soc Cogn Affect Neurosci 7(3): 282–8

    PubMed Central  PubMed  Google Scholar 

  148. Figner B, Knoch, D, et al. (2010) Lateral prefrontal cortex and self-control in intertemporal choice. Nat Neurosci 13(5): 538–9

    PubMed  CAS  Google Scholar 

  149. Ziemann U, Bruns D, Paulus W (1996a) Enhancement of human motor cortex inhibition by the dopamine receptor agonist pergolide: evidence from transcranial magnetic stimulation. Neurosci Lett 208: 187–90

    PubMed  CAS  Google Scholar 

  150. Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996b) Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann Neurol 40: 367–78

    PubMed  CAS  Google Scholar 

  151. Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996c) The effect of lorazepam on the motor cortical excitability in man. Exp Brain Res 109: 127–35

    PubMed  CAS  Google Scholar 

  152. Valls-Sole J, Pascual-Leone A, Wassermann EM, Hallett M (1992) Human motor evoked responses to paired transcranial magnetic stimuli. Electroencephalogr Clin Neurophysiol 85: 355–364

    PubMed  CAS  Google Scholar 

  153. Rothwell JC (1997) Techniques and mechanisms of action of transcranial stimulation of the human motor cortex. J Neurosci Methods 74, 113–22

    PubMed  CAS  Google Scholar 

  154. Cotelli M, Manenti R, et al. (2006) Effect of transcranial magnetic stimulation on action naming in patients with Alzheimer disease. Arch Neurol 63(11): 1602–4

    PubMed  Google Scholar 

  155. Cotelli M, Manenti R, et al. (2008) Transcranial magnetic stimulation improves naming in Alzheimer disease patients at different stages of cognitive decline. Eur J Neurol 15(12): 1286–92

    PubMed  CAS  Google Scholar 

  156. Epstein CM, Evatt ML, et al. (2007) An open study of repetitive transcranial magnetic stimulation in treatment-resistant depression with Parkinson’s disease. Clin Neurophysiol 118(10): 2189–94

    PubMed Central  PubMed  Google Scholar 

  157. Kemp AH, Gordon E, Rush AJ, et al. (2008) Improving the prediction of treatment response in depression: integration of clinical, cognitive, psycho-physiological, neuroimaging, and genetic measures. CNS Spectr 13(12): 1066–86

    PubMed  Google Scholar 

  158. Kahkonen S, Kesaniemi M, Nikouline VV, et al. (2001) Ethanol modulates cortical activity: direct evidence with combined TMS and EEG. Neuroimage 14: 322–8

    PubMed  CAS  Google Scholar 

  159. Iosifescu DV, Greenwald S, Devlin P, et al. (2009) Frontal EEG predictors of treatment outcome in major depressive disorder. European Neuropsychopharmacology 19(11): 772–7

    PubMed  CAS  Google Scholar 

  160. Iosifescu DV (2011) Electroencephalography-derived biomarkers of antidepressant response. Harvard Review of Psychiatry 19(3): 144–54

    PubMed  Google Scholar 

  161. Eschweiler GW, Wegerer C, et al. (2000) Left prefrontal activation predicts therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) in major depression. Psychiatry Res 99(3): 16172

    Google Scholar 

  162. Chen R, Lozano AM, Ashby P (1999) Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings. Exp Brain Res 128: 539–42

    PubMed  CAS  Google Scholar 

  163. Bartos M, Vida I, Jonas, P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8: 45–56

    PubMed  CAS  Google Scholar 

  164. George MS, Ketter TA, et al. (1995) Brain activity during transient sadness and happiness in healthy women. Am J Psychiatry 152(3): 341–51

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Haffen or D. Szekely .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Haffen, E., Szekely, D. (2014). Qu’apporte la TMS aux neurosciences ?. In: Apport des neurosciences à la psychiatrie clinique. Springer, Paris. https://doi.org/10.1007/978-2-8178-0505-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0505-4_7

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0504-7

  • Online ISBN: 978-2-8178-0505-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics