Skip to main content

Apport des modèles animaux comportementaux en psychiatrie : exemples des modèles d’anxiété

  • Chapter
Apport des neurosciences à la psychiatrie clinique
  • 443 Accesses

Résumé

Les modèles animaux sont des outils essentiels pour étudier les paramètres génétiques, moléculaires, cellulaires, et environnementaux impliqués dans plusieurs troubles psychiatriques. Au cours des années, ces modèles ont participé à l»amélioration de nos connaissances de la pathogenèse de plusieurs troubles psychiatriques et de maladies neurodégénératives. Bien que les modèles animaux aient été largement utilisés en psychiatrie, en dépit de nombreuses années de recherches extensives, leur validité est encore en voie d»investigation et présente un défipour les chercheurs et les cliniciens [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Razafsha M, Behforuzi H, Harati H, et al. (2013) An updated overview of animal models in neuropsychiatry. Neuroscience 240C: 204–18

    Google Scholar 

  2. Bourin M (1995) Le devenir des modèles pharmacologiques. Thérapie 50: 375–9

    PubMed  CAS  Google Scholar 

  3. Mckinney WT (1984) Animal models of depression: an overview. Psychiatr Dev 2: 77–96

    PubMed  CAS  Google Scholar 

  4. Kaplan M (2000) Atypical antipsychotics for treatment of mixed depression and anxiety. J Clin Psychiatry 61: 388–9

    PubMed  CAS  Google Scholar 

  5. Shekhar A, Mccann UD, Meaney, et al. (2001) Summary of a National Institute of Mental Health workshop: developing animal models of anxiety disorders. Psychopharmacology (Berl) 157: 327–39

    CAS  Google Scholar 

  6. Vermetten E, Bremmer JD (2002) Circuits and systems in stress. 1. Preclinical studies Depress Anxiety 15: 126–47

    Google Scholar 

  7. Kaffman A, Krystal JH (2012). New frontiers in animal research of psychiatric illness. Methods Mol Biol 829: 3–30

    PubMed Central  PubMed  CAS  Google Scholar 

  8. Bourin M (1997) Animal models of anxiety: are they suitable for predicting drug action in humans? Pol J Pharmacol 49: 79–84

    PubMed  CAS  Google Scholar 

  9. Handley SL, Mcblane JW (1991) 5-HT-the disengaging transmitter? J Psychopharmacol 5: 322–6

    PubMed  CAS  Google Scholar 

  10. Rodgers RJ, Cao BJ, Dalvi A, Holmes A (1997) Animal models of anxiety: an ethological perspective. Braz J Med Biol Res 30: 289–304

    PubMed  CAS  Google Scholar 

  11. Treit D (1985) Animal models for the study of anti-anxiety agents: a review. Neurosci Biobehav Rev 9: 203–22

    PubMed  CAS  Google Scholar 

  12. Sepinwall J, Grodsky FS, Cook L (1978) Conflict behaviour in the squirrel monkey: effects of chlordiazepoxide, diazepam and N-desmethyldiazepam. J Pharmacol Exp Ther 204: 88–102

    PubMed  CAS  Google Scholar 

  13. Belzung C, Griebel G (2001) Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav Brain Res 125: 141–9

    PubMed  CAS  Google Scholar 

  14. Borsini F, Podhorna J, Marazziti D (2002) Do animal models of anxiety predict anxiety-like effects of antidepressants. Psychopharmacology 163: 121–41

    PubMed  CAS  Google Scholar 

  15. Lister RG (1987) The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology (Berl) 92: 180–5

    CAS  Google Scholar 

  16. Handley SL, Mithani S (1984) Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of «fear»-motivated behaviour. Naunyn Schmiedebergs Arch Pharmacol 327: 1–5

    PubMed  CAS  Google Scholar 

  17. Pellow S, Chopin P, File SE, Briley M (1985) Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Meth 14: 149–67

    CAS  Google Scholar 

  18. Hendrie CA, Eilam D, Weiss SM (1997) Effects of diazepam and buspirone on the behaviour of wild voles (Microtus socialis) in two models of anxiety. Pharmacol Biochem Behav 58: 573–6

    PubMed  CAS  Google Scholar 

  19. Yannielli PC, Kanterewicz BI, Cardinali DP (1996) Daily rhythms in spontaneous and diazepam-induced anxiolysis in Syrian hamsters. Pharmacol Biochem Behav 54(4): 651–6

    PubMed  CAS  Google Scholar 

  20. Viana MB, Tomaz C, Graeff FG (1994) The elevated T-maze: a new animal model of anxiety and memory. Pharmacol. Biochem Behav 49: 549–54

    PubMed  CAS  Google Scholar 

  21. Zangrossi H JR, Graeff FG (1997) Behavioural validation of the elevated T-maze, a new animal model of anxiety. Brain Res Bull 44: 1–5

    PubMed  Google Scholar 

  22. Shepherd JK, Grewal SS, Fletcher A, et al. (1994) Behavioural and pharmacological characterisation of the elevated “zero-maze” as an animal model of anxiety. Psychopharmacology 116: 56–64

    PubMed  CAS  Google Scholar 

  23. King SM (1999) Escape-related behaviours in an unstable elevated and exposed environment. I. A new behavioural model of extreme anxiety. Behav Brain Res 98: 113–26

    PubMed  CAS  Google Scholar 

  24. Jones N, King SM (2001) Influence of circadian phase and test illumination on pre-clinical models of anxiety. Physiol Behav 72: 99–106

    PubMed  CAS  Google Scholar 

  25. Jones N, King SM, Duxon MS (2002) Further evidence for the predictive validity of the unstable elevated exposed plus-maze, a behavioural model of extreme anxiety in rats: differential effects of fluoxetine and chlordiazepoxide Behav Pharmacol 13: 525–35

    PubMed  CAS  Google Scholar 

  26. Hogg S (1996) A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol Biochem Behav 54: 21–30

    PubMed  CAS  Google Scholar 

  27. Holmes A, Parmigiani S, Ferrari PF, et al. (2000) Behavioural profile of wild mice in the elevated plus-maze test for anxiety. Physiol Behav 71: 509–16

    PubMed  CAS  Google Scholar 

  28. File SE (2001) Factors controlling measures of anxiety and responses to novelty in the mouse. Behav Brain Res 125: 151–7

    PubMed  CAS  Google Scholar 

  29. Carola V, D»Olimpio F, Brunamonti E, et al. (2002) Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav Brain Res 134: 49–57

    PubMed  Google Scholar 

  30. Wall PM, Messier C (2000) Ethological confirmatory factor analysis of anxiety-like behaviour in the murine elevated plus-maze. Behav Brain Res 114: 199–212

    PubMed  CAS  Google Scholar 

  31. Espejo EF (1997) Effects of weekly or daily exposure to the elevated plus-maze in male mice. Behav Brain Res 87: 233–8

    PubMed  CAS  Google Scholar 

  32. Dawson GR, Tricklebank MD (1995) Use of the elevated plus maze in the search for novel anxiolytic agents. TIPS 16: 33–6

    PubMed  CAS  Google Scholar 

  33. Cole JC, Rodgers RJ (1995) Ethological comparison of the effects of diazepam and acute/chronic imipramine on the behaviour of mice in the elevated plus-maze. Pharmacol Biochem Behav 52: 473–8

    PubMed  CAS  Google Scholar 

  34. Torres C, Escarabajal MD (2002) Validation of a behavioural recording automated system in the elevated plus-maze test. Life Sci 70: 1751–62

    PubMed  CAS  Google Scholar 

  35. Rodgers RJ, Johnson JT (1995) Factor analysis of spatiotemporal and ethological measures in the murine elevated plus-maze test of anxiety. Pharmacol Biochem Behav 52: 297–303

    PubMed  CAS  Google Scholar 

  36. Cruz AP, Frei F, Graeff FG (1994) Ethopharmacological analysis of rat behaviour on the elevated plus-maze. Pharmacol Biochem Behav 49: 171–6

    PubMed  CAS  Google Scholar 

  37. Rodgers RJ, Johnson JT (1998) Behaviourally selective effects of neuroactive steroids on plus-maze anxiety in mice. Pharmacol Biochem Behav 59: 221–32

    PubMed  CAS  Google Scholar 

  38. Rodgers RJ, Cole JC, Tredwell JM (1995) Profile of action of 5-HT3 receptor antagonists, ondansetron and WAY 100289, in the elevated plus-maze test of anxiety of mice. Psychopharmacology (Berl) 117: 306–12

    CAS  Google Scholar 

  39. Fernandes C, File SE (1996) The influence of open arm ledges and maze experience in the elevated plus-maze. Pharmacol Biochem Behav 54: 31–40

    PubMed  CAS  Google Scholar 

  40. Griebel G, Belzung C, Perrault G, Sanger DJ (2000) Differences in anxiety-related behaviours and in sensitivity to diazepam in inbred and outbred strains of mice. Psychopharmacology (Berl) 148: 164–70

    CAS  Google Scholar 

  41. Handley SL, Mcblane JW (1993) 5-HT drugs in animal models of anxiety. Psychopharmacol 112: 13–20

    CAS  Google Scholar 

  42. Rodgers RJ, Cole JC (1994) Anxiolytic-like effect of (S)-WAY 100135, a 5-HT1A receptor antagonist, in the murine elevated plus-maze test. Eur J. Pharmacol 261: 321–5

    PubMed  CAS  Google Scholar 

  43. Van Gaalen MM, Steckler T (2000) Behavioural analysis of four mouse strains in an anxiety test battery. Behav Brain Res 115: 95–106

    PubMed  Google Scholar 

  44. Griebel G, Rodgers RJ, Perrault G, Sanger DJ (2000) The effects of compounds varying in selectivity as 5-HT1A receptor antagonists in three rat models of anxiety. Neuropharmacology 39: 1848–57

    PubMed  CAS  Google Scholar 

  45. Andrade MMM, Tomé MF, Santiago ES, et al. (2003) Longitudinal study of daily variation of rats» behaviour in the elevated plus maze. Physiol Behav 78: 125–33

    PubMed  CAS  Google Scholar 

  46. Wahlsten D, Metten P, Philips TJ, et al. (2003) Different data from different labs: lessons from studies of gene-environment interaction. J Neurobiol 54: 283–311

    PubMed  Google Scholar 

  47. Rodgers RJ, Lee C, Shepherd JK (1992) Effects of diazepam on behavioural and antinociceptive responses to the elevated plus-maze in male mice depend upon treatment regimen and prior maze experience. Psychopharmacology (Berl) 106: 102–10

    CAS  Google Scholar 

  48. Rodgers RJ (1997) Animal models of “anxiety”: where next? Behav Pharmacol 8: 477–96

    PubMed  CAS  Google Scholar 

  49. Moser PC (1989) An evaluation of the elevated plus-maze test using the novel anxiolytic buspirone. Psychopharmacology (Berl) 99: 48–53

    CAS  Google Scholar 

  50. Lee C, Rodgers RJ (1990) Antinociceptive effects of elevated plus-maze exposure: influence of opiate receptor manipulations. Psychopharmacology (Berl) 102: 507–13

    CAS  Google Scholar 

  51. Rodgers RJ, Cole JC (1993) Anxiety enhancement in the murine elevated plus maze by immediate prior exposure to social stressors. Physiol Behav 54: 383–8

    Google Scholar 

  52. Rodgers RJ, Cole JC (1993) Influence of social isolation, gender, strain, and prior novelty on plus-maze behaviour in mice. Physiol Behav 54: 729–36

    PubMed  CAS  Google Scholar 

  53. Holmes A, Rodgers RJ (1998) Responses of Swiss-Webster mice to repeated plus-maze experience: further evidence for a qualitative shift in emotional state? Pharmacol Biochem Behav 60: 473–88

    PubMed  CAS  Google Scholar 

  54. Andreatini R, Bacellar LFS (2000) Animal models: trait or state measure? The test-retest reliability of the elevated plus-maze and behavioural despair. Prog NeuroPsychopharmacol Biol Psychiatry 24: 549–60

    PubMed  CAS  Google Scholar 

  55. Hascoët M, Bourin M, Nic Dhonnchadha BÁ (2001) The mouse lightdark paradigm: a review. Prog. Neuro-Psychopharmacol Biol Psychiatry 25: 141–66

    Google Scholar 

  56. Bourin M, Hascoët M (2003) The mouse light/dark box test. Eur J Pharmacol 463: 55–65

    PubMed  CAS  Google Scholar 

  57. Crawley JN (1981) Neuropharmacologic specificity of a simple animal model for the behavioural actions of benzodiazepines. Pharmacol Biochem Behav 15: 695–9

    PubMed  CAS  Google Scholar 

  58. Costall B, Jones BJ, Kelly ME, et al. (1989) Exploration of mice in a black and white test box: validation as a model of anxiety. Pharmacol Biochem Behav 32: 777–85

    PubMed  CAS  Google Scholar 

  59. Kilfoil T, Michel A, Montgomery D, Whiting RL (1989) Effects of anxiolytic and anxiogenic drugs on exploratory activity in a simple model of anxiety in mice. Neuropharmacology 28: 901–5

    PubMed  CAS  Google Scholar 

  60. Young R, Johnson DN (1991) Anxiolytic-like activity of R(+)-and S(-)-zacopride in mice. Eur J Pharmacol 201: 151–5

    PubMed  CAS  Google Scholar 

  61. Sanchez C (1995) Serotonergic mechanisms involved in the exploratory behaviour of mice in a fully automated two-compartment black and white text box. Pharmacol Toxicol 77: 71–8

    PubMed  CAS  Google Scholar 

  62. Timothy C, Costall B, Smythe JW (1999) Effects of SCH23390 and raclopride on anxiety-like behaviour in rats tested in the black-white box. Pharmacol Biochem Behav 62: 323–7

    PubMed  CAS  Google Scholar 

  63. Gao B, Cutler MG (1992) Effects of acute administration of the 5-HT3 receptor antagonist, BRL 46470A, on the behaviour of mice in a two compartment light-dark box and during social interactions in their home cage and an unfamiliar neutral cage. Neuropharmacology 31: 743–8

    PubMed  CAS  Google Scholar 

  64. Imaizumi M, Suzuki T, Machida H, Onodera K (1994) A fully automated apparatus for a light/dark test measuring anxiolytic or anxiogenic effects of drugs in mice. Jpn J Psychopharmacol 14: 83–91

    CAS  Google Scholar 

  65. Belzung C, Misslin R, Vogel E, et al. (1987) Anxiogenic effects of methyl-beta-carboline-3-carboxylate in a light/dark choice situation. Pharmacol Biochem Behav 28: 29–33

    PubMed  CAS  Google Scholar 

  66. De Angelis L (1992) The anxiogenic-like effects of pentylenetetrazole in mice treated chronically with carbamazepine or valproate. Methods Find Exp. Clin Pharmacol 14(10): 767–71

    PubMed  Google Scholar 

  67. Shimada T, Matsumoto K, Osanai M, et al. (1995) The modified light/ dark transition test in mice: evaluation of classic and putative anxiolytic and anxiogenic drugs. Gen Pharmacol 26: 205–10

    PubMed  CAS  Google Scholar 

  68. Hascoët M, Bourin M (1998) A new approach to the light/dark procedure in mice. Pharmacol Biochem Behav 60: 645–53

    PubMed  Google Scholar 

  69. Griebel G, Perrault G, Sanger DJ (1997) A comparative study of the effects of selective and non-selective 5-HT2C receptor subtype antagonists in rat and mouse models of anxiety. Neuropharmacology 36: 793–802

    PubMed  CAS  Google Scholar 

  70. Griebel G, Rodgers RJ, Perrault G, Sanger DJ (1997) Risk assessment behaviour: evaluation of utility in the study of 5-HT related drugs in the rat elevated plus-maze test. Pharmacol Biochem Behav 57: 817–27

    PubMed  CAS  Google Scholar 

  71. Griebel G (1996) Variability in the effects of 5-HT-related compounds in experimental models of anxiety or never ending story? Pol J Pharm 48: 129–36

    CAS  Google Scholar 

  72. Lapin IP (1999) A decreased frequency of peeking out from the dark compartment—the only constant index of the effect of anxiogens on the behaviour of mice in a “light-darkness” chamber. Zh Vyssh Nerv Deiat Im I P Pavlova 49: 521–6

    PubMed  CAS  Google Scholar 

  73. Rodgers RJ, Shepherd JK (1993) Influence of prior maze experience on behaviour and response to diazepam in the elevated plus-maze and light/dark tests of anxiety in mice. Psychopharmacology (Berl) 113: 237–42

    CAS  Google Scholar 

  74. Sanchez C (1997) Acute stress enhances anxiolytic-like drug responses of mice tested in a black and white test box. Eur Neuropsychopharmacol 7: 283–8

    PubMed  CAS  Google Scholar 

  75. Holmes A, Iles JP, Mayell SJ, Rodgers RJ (2001) Prior test experience comprises the anxiolytic efficacy of chloradiazepoxide in the mouse light/dark exploration test. Behav Brain Res 122: 159–67

    PubMed  CAS  Google Scholar 

  76. Hascoët M, Colombel MC, Bourin M (1999) Influence of age on behavioural response in the light/dark paradigm. Physiol Behav 66: 567–70

    PubMed  Google Scholar 

  77. Bourin M, Nic Dhonnchadha BÁ, Colombel MC, et al. (2001) Cyamemazine as an anxiolytic drug on the elevated plus maze and light/dark paradigm in mice. Behav Brain Res 124: 87–95

    PubMed  CAS  Google Scholar 

  78. Boissier JR, Simon P, Aron C (1968) A new method for rapid screening of minor tranquillizers in mice. Eur J Pharmacol 4: 145–51

    PubMed  CAS  Google Scholar 

  79. Bourin M, Hascoët M, Mansouri B, et al. (1992) Comparison of behavioural effects after single and repeated administrations of four benzodiazepines in three mice behavioural models. J Psychiatry Neurosci 17: 72–7

    PubMed Central  PubMed  CAS  Google Scholar 

  80. Hascoët M, Bourin M, Colombel MC, et al. (2000) Anxiolytic-like effects of antidepressants after acute administration in a four-plate test in mice. Pharmacol Biochem Behav 65: 339–44

    PubMed  Google Scholar 

  81. Hascoët M, Bourin M, Couetoux Du Tertre A (1997) Influence of prior experience on mice behaviour using the four-plate test. Pharmacol. Biochem Behav 58: 1131–8

    PubMed  Google Scholar 

  82. Paluchowska MH, Mokrosz MJ, Charakchieva-Minol S, et al. (2003) Novel 4-alkyl-1-arylpiperazines and 1,2,3,4-tetrahydroisoquinolines containing diphenylmethylamino or diphenylmethoxy fragment with differentiated 5-HT1A/5-HT2A/D2 receptor activity. Pol J Pharmacol 4: 543–52

    Google Scholar 

  83. Griebel G, Simiand J, Steinberg R, et al. (2002) 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1S)-2-cyclopropyl-1-(3-fluoro-4-methylphenyl) ethyl]5-methyl-N-(2-propynyl)-1, 3-thiazol-2-amine hydrochloride (SSR125543A), a potent and selective corticotrophin-releasing factor( 1) receptor antagonist. II. Characterization in rodent models of stress-related disorders. J Pharmacol Exp Ther 301: 333–45

    PubMed  CAS  Google Scholar 

  84. Tatarczynska E, Klodzinska A, Chojnacka-Wojcik E, et al. (2001) Potential anxiolytic-and antidepressant-like effects of MPEP, a potent, selective and systemically active mGlu5 receptor antagonist. Br J Pharmacol 132: 1423–30

    PubMed Central  PubMed  CAS  Google Scholar 

  85. Masse F, Petit-Demouliere B, Dubois I, et al. (2008) Anxiolytic-like effects of DOI micro-inections into the hippocampus (but not the amygdala nort the PAG) in the mice four plates test. Beh Brain Res 188: 291–7

    CAS  Google Scholar 

  86. Nic Dhonnchadha BÁ, Hascoët M, Bourin M (2003a) Anxiolytic-like effects of 5-HT2 ligands on three mouse models of anxiety. Behav Brain Res 140: 203–14

    PubMed  CAS  Google Scholar 

  87. Nic Dhonnchadha BÁ, Hascoët M, Jolliet P, Bourin M (2003b) Evidence for a 5-HT2A receptor mode of action in the anxiolytic-like properties of DOI in mice. Behav Brain Res 147: 175–84

    PubMed  CAS  Google Scholar 

  88. Petit-Demouliere B, Hascoët M, Bourin M (2008) Trigerring factors for one-trial tolerance in the four-plate test-retest in mice. Eur Neuropsychopharmacol 18: 41–7

    PubMed  CAS  Google Scholar 

  89. Petit-Demouliere B, Masse F, Cogrel N et al. (2009) Brain structures implicated in the four-plate test in naîve and experienced Swiss mice using injection of diazepam and the 5-HT2A agonist DOI. Beh Brain Res 204: 200–5

    CAS  Google Scholar 

  90. Hascoët M, Bourin M (2012) Evaluation of the test-retest model of anxiety in mice. Current Psychopharmacology 1: 247–51

    Google Scholar 

  91. Wurbel H (2000) Behaviour and the standardization fallacy. Nat Genet 26: 263

    PubMed  CAS  Google Scholar 

  92. Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse behaviour: interactions with laboratory environment. Science 284: 1670–2

    PubMed  CAS  Google Scholar 

  93. Wahlsten D (2001) Standardizing tests of mouse behaviour: reasons, recommendations, and reality. Physiol Behav 73: 695–704

    PubMed  CAS  Google Scholar 

  94. Calatayud F, Belzung C (2001) Emotional reactivity in mice, a case of nongenetic heredity? Physiol Behav 74: 355–62

    PubMed  CAS  Google Scholar 

  95. Fernandez-Teruel A, Gimenez-Llort L, Escorihuela RM, et al. (2002) Early-life handling stimulation and environmental enrichment: are some of their effects mediated by similar neural mechanisms? Pharmacol Biochem Behav 73: 233–45

    PubMed  CAS  Google Scholar 

  96. Gartner K (1990) A third component causing random variability beside environment and genotype. A reason for the limited success of a 30 year long effort to standardize laboratory animals? Lab Anim 24: 71–7

    PubMed  CAS  Google Scholar 

  97. Ferrari PF, Palanza P, Parmigiani S, Rodgers RJ (1998) Interindividual variability in Swiss male mice: relationship between social factors, aggression, and anxiety. Physiol Behav 63: 821–7

    PubMed  CAS  Google Scholar 

  98. Palanza P (2001) Animal models of anxiety and depression: how are females different? Neurosci Biobehav Rev 25: 219–33

    PubMed  CAS  Google Scholar 

  99. Vetulani J, Marona-Lewicka D, Michaluk J, Popik P (1988) Stability and variability of locomotor responses of laboratory rodents. III. Effect of environmental factors and lack of catecholamine receptor correlates. Pol J Pharmacol Pharm 40: 273–80

    PubMed  CAS  Google Scholar 

  100. Fernandez-Teruel A, Escorihuela RM, Gray JA, et al. (2002) A quantitative trait locus influencing anxiety in the laboratory rat. Genome Res 12: 618–26

    PubMed Central  PubMed  CAS  Google Scholar 

  101. Ho YJ, Eichendorff J, Schwarting RK (2002) Individual response profiles of male Wistar rats in animal models for anxiety and depression. Behav Brain Res 136: 1–12

    PubMed  Google Scholar 

  102. De Sousa NJ, Wunderlich GR, De Cabo C, Vaccarino FJ (1998) Individual differences in sucrose intake, predict behavioural reactivity in rodent models of anxiety. Pharmacol Biochem Behav 60: 841–6

    Google Scholar 

  103. Bourin M, Petit-Demouliere B, Nic Dhonnchadha BÁ, Hascoët M (2007) Animal models of anxiety in mice. Fund. Clin Pharmacol 21: 567–74

    CAS  Google Scholar 

  104. Toth M (2003) 5-HT1A receptor knockout mouse as a genetic model of anxiety. Eur J Pharmacol 463: 177–84

    PubMed  CAS  Google Scholar 

  105. Weiss KC, Kim DY, Pawson CT, Cordes SP (2003) A genetic screen for mouse mutations with defects in serotonin responsiveness. Brain Res Mol 115: 162–72

    CAS  Google Scholar 

  106. Nomura J, Takumi T (2012) Animal models of psychiatric disorders that reflect human copy number variation. Neural Plast 2012: 589524.

    Google Scholar 

  107. Crawley J, Goodwin FK (1980) Preliminary report of a simple animal behaviour model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 13: 167–70

    PubMed  CAS  Google Scholar 

  108. Gould TD, Gottesman II. (2006) Psychiatric endophenotypes and the development of valid animal models Genes. Brain Behav 5: 113–9

    CAS  Google Scholar 

  109. Onaivi ES, Bishop-Robinson C, Darmani NA, Sanders-Bush E (1995) Behavioural effects of (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane, (DOI) in the elevated plus-maze test. Life Sci 57: 2455–66

    PubMed  CAS  Google Scholar 

  110. Rex A, Fink H, Marsden CA (1994) Effects of BOC-CCK-4 and L 365.260 on cortical 5-HT release in guinea-pigs on exposure to the elevated plus maze. Neuropharmacology 33: 559–65

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bourin .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Bourin, M. (2014). Apport des modèles animaux comportementaux en psychiatrie : exemples des modèles d’anxiété. In: Apport des neurosciences à la psychiatrie clinique. Springer, Paris. https://doi.org/10.1007/978-2-8178-0505-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0505-4_6

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0504-7

  • Online ISBN: 978-2-8178-0505-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics