Skip to main content

Assessment of Tissue Destruction After Focal Therapy

  • Chapter
  • First Online:
  • 664 Accesses

Abstract

Thermoablation techniques using either high-intensity focused ultrasound, interstitial laser, vascular-targeted photodynamic therapy, or cryotherapy have in common the induction of necrosis in a given target area within the prostate with good spatial accuracy. Thus, they seem to be ideal tools for focal treatment of prostate cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boyes A, Tang K, Yaffe M, Sugar L, Chopra R, Bronskill M. Prostate tissue analysis immediately following magnetic resonance imaging guided transurethral ultrasound thermal therapy. J Urol. 2007;178(3 Pt 1):1080–5.

    Article  PubMed  Google Scholar 

  2. Susani M, Madersbacher S, Kratzik C, Vingers L, Marberger M. Morphology of tissue destruction induced by focused ultrasound. Eur Urol. 1993;23 Suppl 1:34–8.

    PubMed  Google Scholar 

  3. Beerlage HP, van Leenders GJ, Oosterhof GO, et al. High-intensity focused ultrasound (HIFU) followed after one to two weeks by radical retropubic prostatectomy: results of a prospective study. Prostate. 1999;39(1):41–6.

    Article  CAS  PubMed  Google Scholar 

  4. Chapelon JY, Margonari J, Theillere Y, et al. Effects of high-energy focused ultrasound on kidney tissue in the rat and the dog. Eur Urol. 1992;22(2):147–52.

    CAS  PubMed  Google Scholar 

  5. Gelet A, Chapelon JY, Margonari J, et al. Prostatic tissue destruction by high-intensity focused ultrasound: experimentation on canine prostate. J Endourol. 1993;7(3):249–53.

    Article  CAS  PubMed  Google Scholar 

  6. Beerlage HP, Thuroff S, Debruyne FM, Chaussy C, de la Rosette JJ. Transrectal high-intensity focused ultrasound using the Ablatherm device in the treatment of localized prostate carcinoma. Urology. 1999;54(2):273–7.

    Article  CAS  PubMed  Google Scholar 

  7. Chen L, Rivens I, ter Haar G, Riddler S, Hill CR, Bensted JP. Histological changes in rat liver tumours treated with high-intensity focused ultrasound. Ultrasound Med Biol. 1993;19(1):67–74.

    Article  CAS  PubMed  Google Scholar 

  8. el-Ouahabi A, Guttmann CR, Hushek SG, et al. MRI guided interstitial laser therapy in a rat malignant glioma model. Lasers Surg Med. 1993;13(5):503–10.

    Article  CAS  PubMed  Google Scholar 

  9. Chavrier F, Chapelon JY, Gelet A, Cathignol D. Modeling of high-intensity focused ultrasound-induced lesions in the presence of cavitation bubbles. J Acoust Soc Am. 2000;108(1):432–40.

    Article  PubMed  Google Scholar 

  10. Feng Y, Fuentes D. Model-based planning and real-time predictive control for laser-induced thermal therapy. Int J Hyperthermia. 2011;27(8):751–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Prakash P, Diederich CJ. Considerations for theoretical modelling of thermal ablation with catheter-based ultrasonic sources: implications for treatment planning, monitoring and control. Int J Hyperthermia. 2012;28(1):69–86.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Rouviere O, Lyonnet D, Raudrant A, et al. MRI appearance of prostate following transrectal HIFU ablation of localized cancer. Eur Urol. 2001;40(3):265–74.

    Article  CAS  PubMed  Google Scholar 

  13. Rouviere O, Souchon R, Salomir R, Gelet A, Chapelon JY, Lyonnet D. Transrectal high-intensity focused ultrasound ablation of prostate cancer: effective treatment requiring accurate imaging. Eur J Radiol. 2007;63(3):317–27.

    Article  PubMed  Google Scholar 

  14. Rouviere O, Curiel L, Chapelon JY, et al. Can color doppler predict the uniformity of HIFU-induced prostate tissue destruction? Prostate. 2004;60(4):289–97.

    Article  PubMed  Google Scholar 

  15. Fry FJ. Intense focused ultrasound in medicine. Some practical guiding physical principles from sound source to focal site in tissue. Eur Urol. 1993;23 Suppl 1:2–7.

    PubMed  Google Scholar 

  16. Zhou P, Zhou P, He W, et al. The influence of blood supply on high intensity focused ultrasound a preliminary study on rabbit hepatic VX2 tumors of different ages. Acad Radiol. 2012;19(1):40–7.

    Article  PubMed  Google Scholar 

  17. Chen L, ter Haar G, Hill CR, et al. Effect of blood perfusion on the ablation of liver parenchyma with high-intensity focused ultrasound. Phys Med Biol. 1993;38(11):1661–73.

    Article  CAS  PubMed  Google Scholar 

  18. Wiart M, Curiel L, Gelet A, Lyonnet D, Chapelon JY, Rouviere O. Influence of perfusion on high-intensity focused ultrasound prostate ablation: a first-pass MRI study. Magn Reson Med. 2007;58(1):119–27.

    Article  CAS  PubMed  Google Scholar 

  19. Chen L, ter Haar G, Hill CR. Influence of ablated tissue on the formation of high-intensity focused ultrasound lesions. Ultrasound Med Biol. 1997;23(6):921–31.

    Article  CAS  PubMed  Google Scholar 

  20. Crouzet S, Murat FJ, Pommier P, et al. Locally recurrent prostate cancer after initial radiation therapy: early salvage high-intensity focused ultrasound improves oncologic outcomes. Radiother Oncol. 2012;105(2):198–202.

    Article  PubMed  Google Scholar 

  21. Rieke V, Butts Pauly K. MR thermometry. J Magn Reson Imaging. 2008;27(2):376–90.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Chopra R, Wachsmuth J, Burtnyk M, Haider MA, Bronskill MJ. Analysis of factors important for transurethral ultrasound prostate heating using MR temperature feedback. Phys Med Biol. 2006;51(4):827–44.

    Article  PubMed  Google Scholar 

  23. Salomir R, Delemazure AS, Palussiere J, Rouviere O, Cotton F, Chapelon JY. Image-based control of the magnetic resonance imaging-guided focused ultrasound thermotherapy. Top Magn Reson Imaging. 2006;17(3):139–51.

    Article  PubMed  Google Scholar 

  24. Ramsay E, Mougenot C, Kohler M, et al. MR thermometry in the human prostate gland at 3.0T for transurethral ultrasound therapy. J Magn Reson Imaging. 2013. doi:10.1002/jmri.24063.

    PubMed Central  Google Scholar 

  25. Goharrizi AY, N’Djin WA, Kwong R, Chopra R. Development of a new control strategy for 3D MRI-controlled interstitial ultrasound cancer therapy. Med Phys. 2013;40(3):033301.

    Article  PubMed  Google Scholar 

  26. Partanen A, Yerram NK, Trivedi H, et al. Magnetic resonance imaging (MRI)-guided transurethral ultrasound therapy of the prostate: a preclinical study with radiological and pathological correlation using customised MRI-based moulds. BJU Int. 2013. doi:10.1111/bju.12126.

    PubMed Central  PubMed  Google Scholar 

  27. Hijnen NM, Elevelt A, Grull H. Stability and trapping of magnetic resonance imaging contrast agents during high-intensity focused ultrasound ablation therapy. Invest Radiol. 2013;48(7):517–24.

    Article  CAS  PubMed  Google Scholar 

  28. Kickhefel A, Rosenberg C, Weiss CR, et al. Clinical evaluation of MR temperature monitoring of laser-induced thermotherapy in human liver using the proton-resonance-frequency method and predictive models of cell death. J Magn Reson Imaging. 2011;33(3):704–12.

    Article  PubMed  Google Scholar 

  29. Larson BT, Collins JM, Huidobro C, Corica A, Vallejo S, Bostwick DG. Gadolinium-enhanced MRI in the evaluation of minimally invasive treatments of the prostate: correlation with histopathologic findings. Urology. 2003;62(5):900–4.

    Article  PubMed  Google Scholar 

  30. Kirkham AP, Emberton M, Hoh IM, Illing RO, Freeman AA, Allen C. MR imaging of prostate after treatment with high-intensity focused ultrasound. Radiology. 2008;246(3):833–44.

    Article  PubMed  Google Scholar 

  31. Tazaki H, Nakashima J, Nakagawa K. MRI evaluation of cavitation induced by laser prostatectomy. J Endourol. 1995;9(2):171–3.

    Article  CAS  PubMed  Google Scholar 

  32. Chen J, Daniel BL, Diederich CJ, et al. Monitoring prostate thermal therapy with diffusion-weighted MRI. Magn Reson Med. 2008;59(6):1365–72.

    Article  PubMed  Google Scholar 

  33. Le Y, Glaser K, Rouviere O, Ehman R, Felmlee JP. Feasibility of simultaneous temperature and tissue stiffness detection by MRE. Magn Reson Med. 2006;55(3):700–5.

    Article  PubMed  Google Scholar 

  34. Laurent S, Elst LV, Copoix F, Muller RN. Stability of MRI paramagnetic contrast media: a proton relaxometric protocol for transmetallation assessment. Invest Radiol. 2001;36(2):115–22.

    Article  CAS  PubMed  Google Scholar 

  35. MacNeil S, Bains S, Johnson C, et al. Gadolinium contrast agent associated stimulation of human fibroblast collagen production. Invest Radiol. 2011;46(11):711–7.

    CAS  PubMed  Google Scholar 

  36. Seo CH, Shi Y, Huang SW, Kim K, O’Donnell M. Thermal strain imaging: a review. Interface Focus. 2011;1(4):649–64.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Illing RO, Leslie TA, Kennedy JE, Calleary JG, Ogden CW, Emberton M. Visually directed high-intensity focused ultrasound for organ-confined prostate cancer: a proposed standard for the conduct of therapy. BJU Int. 2006;98(6):1187–92.

    Article  PubMed  Google Scholar 

  38. Murat FJ, Gelet A. Current status of high-intensity focused ultrasound for prostate cancer: technology, clinical outcomes, and future. Curr Urol Rep. 2008;9(2):113–21.

    Article  PubMed  Google Scholar 

  39. Zini C, Hipp E, Thomas S, Napoli A, Catalano C, Oto A. Ultrasound- and MR-guided focused ultrasound surgery for prostate cancer. World J Radiol. 2012;4(6):247–52.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Crouzet S, Rebillard X, Chevallier D, et al. Multicentric oncologic outcomes of high-intensity focused ultrasound for localized prostate cancer in 803 patients. Eur Urol. 2010;58(4):559–66.

    Article  PubMed  Google Scholar 

  41. Sedelaar JP, Aarnink RG, van Leenders GJ, et al. The application of three-dimensional contrast-enhanced ultrasound to measure volume of affected tissue after HIFU treatment for localized prostate cancer. Eur Urol. 2000;37(5):559–68.

    Article  CAS  PubMed  Google Scholar 

  42. Rouvière O, Glas L, Girouin N, et al. Transrectal HIFU ablation of prostate cancer: assessment of tissue destruction with contrast-enhanced ultrasound. Radiology. 2011;259(2):583–91.

    Article  PubMed  Google Scholar 

  43. Souchon R, Rouviere O, Gelet A, et al. Visualisation of HIFU lesions using elastography of the human prostate in vivo: preliminary results. Ultrasound Med Biol. 2003;29(7):1007–15.

    Article  PubMed  Google Scholar 

  44. Curiel L, Souchon R, Rouviere O, Gelet A, Chapelon JY. Elastography for the follow-up of high-intensity focused ultrasound prostate cancer treatment: initial comparison with MRI. Ultrasound Med Biol. 2005;31(11):1461–8.

    Article  CAS  PubMed  Google Scholar 

  45. Schneider M. SonoVue, a new ultrasound contrast agent. Eur Radiol. 1999;9 Suppl 3:S347–8.

    Article  PubMed  Google Scholar 

  46. Chevalier S, Anidjar M, Scarlata E, et al. Preclinical study of the novel vascular occluding agent, WST11, for photodynamic therapy of the canine prostate. J Urol. 2011;186(1):302–9.

    Article  CAS  PubMed  Google Scholar 

  47. Chevalier S, Cury FL, Scarlata E, et al. Endoscopic vascular targeted photodynamic therapy with the photosensitizer TOOKAD(R) soluble (WST11) for benign prostatic hyperplasia in the pre-clinical dog model. J Urol. 2013. doi:10.1016/j.juro.2013.05.014.

    PubMed  Google Scholar 

  48. Huang Z, Chen Q, Dole KC, et al. The effect of Tookad-mediated photodynamic ablation of the prostate gland on adjacent tissues – in vivo study in a canine model. Photochem Photobiol Sci. 2007;6(12):1318–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Borle F, Radu A, Fontolliet C, van den Bergh H, Monnier P, Wagnieres G. Selectivity of the photosensitiser Tookad for photodynamic therapy evaluated in the Syrian golden hamster cheek pouch tumour model. Br J Cancer. 2003;89(12):2320–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Trachtenberg J, Weersink RA, Davidson SR, et al. Vascular-targeted photodynamic therapy (padoporfin, WST09) for recurrent prostate cancer after failure of external beam radiotherapy: a study of escalating light doses. BJU Int. 2008;102(5):556–62.

    Article  CAS  PubMed  Google Scholar 

  51. Haider MA, Davidson SR, Kale AV, et al. Prostate gland: MR imaging appearance after vascular targeted photodynamic therapy with palladium-bacteriopheophorbide. Radiology. 2007;244(1):196–204.

    Article  PubMed  Google Scholar 

  52. Betrouni N, Lopes R, Puech P, Colin P, Mordon S. A model to estimate the outcome of prostate cancer photodynamic therapy with TOOKAD Soluble WST11. Phys Med Biol. 2011;56(15):4771–83.

    Article  PubMed  Google Scholar 

  53. Huang Z, Haider MA, Kraft S, et al. Magnetic resonance imaging correlated with the histopathological effect of Pd-bacteriopheophorbide (Tookad) photodynamic therapy on the normal canine prostate gland. Lasers Surg Med. 2006;38(7):672–81.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Maccini M, Sehrt D, Pompeo A, Chicoli FA, Molina WR, Kim FJ. Biophysiologic considerations in cryoablation: a practical mechanistic molecular review. Int Braz J Urol. 2011;37(6):693–6.

    Article  PubMed  Google Scholar 

  55. Kimura M, Rabbani Z, Mouraviev V, et al. Morphology of hypoxia following cryoablation in a prostate cancer murine model: its relationship to necrosis, apoptosis and, microvessel density. Cryobiology. 2010;61(1):148–54.

    Article  PubMed  Google Scholar 

  56. van den Bosch MA, Josan S, Bouley DM, et al. MR imaging-guided percutaneous cryoablation of the prostate in an animal model: in vivo imaging of cryoablation-induced tissue necrosis with immediate histopathologic correlation. J Vasc Interv Radiol. 2009;20(2):252–8.

    Article  PubMed  Google Scholar 

  57. Yang WL, Addona T, Nair DG, Qi L, Ravikumar TS. Apoptosis induced by cryo-injury in human colorectal cancer cells is associated with mitochondrial dysfunction. Int J Cancer J Int Cancer. 2003;103(3):360–9.

    Article  CAS  Google Scholar 

  58. Erinjeri JP, Clark TW. Cryoablation: mechanism of action and devices. J Vasc Interv Radiol. 2010;21(8 Suppl):S187–91.

    Article  PubMed  Google Scholar 

  59. Kickhefel A, Weiss C, Roland J, Gross P, Schick F, Salomir R. Correction of susceptibility-induced GRE phase shift for accurate PRFS thermometry proximal to cryoablation iceball. MAGMA. 2012;25(1):23–31.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Rouvière .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag France

About this chapter

Cite this chapter

Rouvière, O., Sanzalone, T. (2015). Assessment of Tissue Destruction After Focal Therapy. In: Barret, E., Durand, M. (eds) Technical Aspects of Focal Therapy in Localized Prostate Cancer. Springer, Paris. https://doi.org/10.1007/978-2-8178-0484-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0484-2_9

  • Published:

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0483-5

  • Online ISBN: 978-2-8178-0484-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics