Elements of Functional Neuroanatomy: The Major Neurotransmitter Systems

  • Barbara Ferry
  • Damien Gervasoni
  • Catherine Vogt


With essential elements of functional neuroanatomy, this chapter completes the anatomical basis developed in  Chap. 2, with a systematic description of the major neurotransmitter systems, including ways to experimentally influence them. The amino acids, such as glutamate and gamma-aminobutyric acid (GABA), and the monoamines such as noradrenaline and dopamine, serotonin, and acetylcholine are successively described from their localization in the brain to their implications in CNS disorders. For each neurotransmitter, the chemical structure and mechanism of biosynthesis and degradation are detailed and illustrated along with their central action through chemical interactions with their specific receptors and the anatomical distribution of their target areas. Rather than exhaustively reviewing all the neurotransmitter systems of the brain, this presentation of selected neurotransmitters aims to provide a comprehensive overview of the complexity of chemical neurotransmission in the brain and to help investigators in their search of an optimal way to experimentally manipulate a given system and in the prediction of the potential effects of such manipulations. The elements provided in this chapter may additionally guide users in setting up their experimental approach (e.g., systemic versus local pharmacology), in choosing the adequate molecules that will ensure correct anesthesia and analgesia of the subject when required without interfering (or interfering the least) with the system studied.


Tyrosine Hydroxylase Adenylate Cyclase Locus Coeruleus Nicotinic Receptor Cholinergic Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38(8):1083–1152PubMedGoogle Scholar
  2. Berger P, Farrel K, Sharp F, Skolnick P (1994) Drugs acting at the strychnine-insensitive glycine receptor do not induce HSP-70 protein in the cingulate cortex. Neurosci Lett 168(1–2):147–150PubMedGoogle Scholar
  3. Berger M, Gray JA, Roth BL (2009) The expanded biology of serotonin. Annu Rev Med 60:355–366PubMedGoogle Scholar
  4. Berridge CW, Stratford TL, Foote SL, Kelley AE (1997) Distribution of dopamine-beta-hydroxylase-like immunoreactive fibers within the shell subregion of the nucleus accumbens. Synapse 27:230–241PubMedGoogle Scholar
  5. Binns KE, Turner JP, Salt TE (2003) Kainate receptor (GluR5) – mediated disinhibition of responses in rat ventrobasal thalamus allows a novel sensory processing mechanism. J Physiol 551(Pt 2):525–537PubMedCentralPubMedGoogle Scholar
  6. Bjorklund A, Hokfelt T, Kuhar MJ (2005) The handbook of chemical neuroanatomy. Elsevier, AmsterdamGoogle Scholar
  7. Bockaert J, Claeysen S, Compan V, Dumuis A (2011) 5-HT(4) receptors, a place in the sun: act two. Curr Opin Pharmacol 11(1):87–93PubMedGoogle Scholar
  8. Bolea S, Avignone E, Berretta N, Sanchez-Andres JV, Cherubini E (1999) Glutamate controls the induction of GABA-mediated giant depolarizing potentials through AMPA receptors in neonatal rat hippocampal slices. J Neurophysiol 81(5):2095–2102PubMedGoogle Scholar
  9. Bon C, Galvan M (1996) Electrophysiological actions of GABAB agonists and antagonists in rat dorso-lateral septal neurones in vitro. Br J Pharmacol 118(4):961–967PubMedCentralPubMedGoogle Scholar
  10. Borne RF (1994) Serotonin: the neurotransmitter for the’90s. Drug Topics 10:108–120Google Scholar
  11. Chebib M, Hinton T, Schmid KL et al (2009) Novel, potent, and selective GABAC antagonists inhibit myopia development and facilitate learning and memory. J Pharmacol Exp Ther 328(2):448–457PubMedCentralPubMedGoogle Scholar
  12. Chen ZJ, Minneman KP (2005) Recent progress in alpha1-adrenergic receptor research. Acta Pharmacol Sin 26(11):1281–1287PubMedGoogle Scholar
  13. Chu HY, Yang Z, Zhao B, Jin GZ, Hu GY, Zhen X (2010) Activation of phosphatidyl-inositol-linked D1-like receptors increases spontaneous glutamate release in rat somatosensory cortical neurons in vitro. Brain Res 1343:20–27PubMedGoogle Scholar
  14. Cooper JR, Bloom FL, Roth RH (2003) The biochemical basis of neuropharmacology, 8th edn. Oxford Academy Press, OxfordGoogle Scholar
  15. Costall B, Naylor RJ (1991) Pharmacological properties and functions of central 5-HT3 receptors. Therapie 46(6):437–444PubMedGoogle Scholar
  16. Cowen PJ (1991) Serotonin receptor subtypes: implications for psychopharmacology. Br J Psychiat 12:7–14Google Scholar
  17. Crunelle CL, Miller ML, Booij J, van den Brink W (2010) The nicotinic acetylcholine receptor partial agonist varenicline and the treatment of drug dependence: a review. Eur Neuropsychopharmacol 20(2):69–79PubMedGoogle Scholar
  18. Cuche H (1981) Séminaire de psychiatrie biologique, Hôpital Sainte-Anne, tome 1. Edition Medicales Fournier Freres, Gennevilliers, pp 107–125Google Scholar
  19. D’Aoust JP, Tiberi M (2010) Role of the extracellular amino terminus and first membrane spanning helix of dopamine D1 and D5 receptors in shaping ligand selectivity and efficacy. Cell Signal 22(1):106–116PubMedGoogle Scholar
  20. Dahlstrom A, Fuxe K (1964) Localization of monoamines in the lower brain stem. Experientia 20:398–399PubMedGoogle Scholar
  21. Danysz W, Parsons CG (1998) Glycine and N-methyl-d-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev 50(4):597–664PubMedGoogle Scholar
  22. Dawson LA (2011) The central role of 5-HT6 receptors in modulating brain neurochemistry. Int Rev Neurobiol 96:1–26PubMedGoogle Scholar
  23. De Biasi M, Dani JA (2011) Reward, addiction, withdrawal to nicotine. Annu Rev Neurosci 34:105–130PubMedCentralPubMedGoogle Scholar
  24. El-Ghundi M, O’Dowd BF, George SR (2007) Insights into the role of dopamine receptor systems in learning and memory. Rev Neurosci 18(1):37–66PubMedGoogle Scholar
  25. Epelbaum J (1995) Neuropeptides et neuromédiateurs, 2eth edn. Editions Inserm/Sandoz, ParisGoogle Scholar
  26. Erlander MG, Lovenberg TW, Baron BM et al (1993) Two members of a distinct subfamily of 5-hydroxytryptamine receptors differentially expressed in rat brain. Proc Natl Acad Sci U S A 90(8):3452–3456PubMedCentralPubMedGoogle Scholar
  27. Forbes IT, Dabbs S, Duckworth DM et al (1998) (R)-3,N-dimethyl158 N-[1-methyl-3-(4-methyl-piperidinyl-1-yl) propyl]benzensulfonamide: the first selective 5-HT7 antagonist. J Med Chem 41:655–657PubMedGoogle Scholar
  28. Fukunaga K, Shioda N (2012) Novel dopamine D2 receptor signaling through proteins interacting with the third cytoplasmic loop. Mol Neurobiol 45(1):144–152PubMedGoogle Scholar
  29. Funahashi M, Stewart M (1998) Properties of gamma-frequency oscillations initiated by propagating population bursts in retrohippocampal regions of rat brain slices. J Physiol 510(Pt 1):191–208PubMedCentralPubMedGoogle Scholar
  30. Gether U, Asmar F, Meinild AK, Rasmussen SG (2002) Structural basis for activation of G-protein-coupled receptors. Pharmacol Toxicol 91(6):304–312PubMedGoogle Scholar
  31. Gotti C, Clementi F (2004) Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 74:363–396PubMedGoogle Scholar
  32. Gotti C, Clementi F, Fornari A et al (2009) Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem Pharmacol 78(7):703–711PubMedGoogle Scholar
  33. Hague C, Chen Z, Uberti M, Minneman KP (2003) Alpha(1)-adrenergic receptor subtypes: non-identical triplets with different dancing partners ? Life Sci 74(4):411–418PubMedGoogle Scholar
  34. Haydar SN, Dunlop J (2010) Neuronal nicotinic acetylcholine receptors – targets for the development of drugs to treat cognitive impairment associated with schizophrenia and Alzheimer’s disease. Curr Top Med Chem 10(2):144–152PubMedGoogle Scholar
  35. Hirano K, Piers TM, Searle KL, Miller ND, Rutter AR, Chapman PF (2009) Procognitive 5-HT6 antagonists in the rat forced swimming test: potential therapeutic utility in mood disorders associated with Alzheimer’s disease. Life Sci 84(15–16):558–562PubMedGoogle Scholar
  36. Hostetler CM, Harkey SL, Krzywosinski TB, Aragona BJ, Bales KL (2011) Neonatal exposure to the D1 agonist SKF38393 inhibits pair bonding in the adult prairie vole. Behav Pharmacol 22(7):703–710PubMedCentralPubMedGoogle Scholar
  37. Hoyer D, Clarke DE, Fozard JR et al (1994) International union of pharmacology: classification of receptors for 5 hydroxytryptamine (serotonin). Pharmacol Rev 46:157–205PubMedGoogle Scholar
  38. Huang Y, Qiu AW, Peng YP, Liu Y, Huang HW, Qiu YH (2010) Roles of dopamine receptor subtypes in mediating modulation of T lymphocyte function. Neuro Endocrinol Lett 31(6):782–791PubMedGoogle Scholar
  39. Ishikawa M, Hashimoto K (2011) Alpha7 nicotinic acetylcholine receptor as a potential therapeutic target for schizophrenia. Curr Pharmacol Des 17(2):121–129Google Scholar
  40. Joyce JN, Meador-Woodruff JH (1997) Linking the family of D2 receptors to neuronal circuits in human brain: insights into schizophrenia. Neuropsychopharmacology 16(6):375–384PubMedGoogle Scholar
  41. Kabashima N, Shibuya I, Ibrahim N, Ueta Y, Yamashita H (1997) Inhibition of spontaneous EPSCs and IPSCs by presynaptic GABAB receptors on rat supraoptic magnocellular neurons. J Physiol 504(Pt 1):113–126PubMedCentralPubMedGoogle Scholar
  42. Kawamata J, Shimohama SS (2011) Stimulating nicotinic receptors trigger multiple pathways attenuating cytotoxicity in models of Alzheimer’s and Parkinson’s diseases. J Alzheimers Dis 24(Suppl 2):95–109PubMedGoogle Scholar
  43. Kem WR (2000) The brain alpha7 nicotinic receptor may be an important therapeutic target for the treatment of Alzheimer’s disease: studies with DMXBA (GTS-21). Behav Brain Res 113(1–2):169–181PubMedGoogle Scholar
  44. King MV, Marsden CA, Fone KC (2008) A role for the 5-HT(1A), 5-HT4 and 5-HT6 receptors in learning and memory. Trends Pharmacol Sci 29(9):482–492PubMedGoogle Scholar
  45. Kogan HA, Marsden CA, Fone KC (2002) DR4004, a putative 5-HT(7) receptor antagonist, also has functional activity at the dopamine D2 receptor. Eur J Pharmacol 449(1–2):105–111PubMedGoogle Scholar
  46. Kvernmo T, Houben J, Sylte I (2008) Receptor-binding and pharmacokinetic properties of dopaminergic agonists. Curr Top Med Chem 8(12):1049–1067PubMedGoogle Scholar
  47. Labrakakis C, Tong CK, Weissman T, Torsney C, MacDermott AB (2003) Localization and function of ATP and GABAA receptors expressed by nociceptors and other postnatal sensory neurons in rat. J Physiol 549(Pt 1):131–142PubMedCentralPubMedGoogle Scholar
  48. Langmead CJ, Watson J, Reavill C (2008) Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol Ther 117(2):232–243PubMedGoogle Scholar
  49. Lovell PJ, Bromidge SM, Dabbs S et al (2000) A novel, potent, and selective 5-HT7 antagonist: (R)-3-(2-(2-(4-methylpiperin-1-yl)-ethyl)pyrrolidine-1-sulfonyl)phenol (SB-269970). J Med Chem 43:342–345PubMedGoogle Scholar
  50. Lucas G, Rymar VV, Du J et al (2007) Serotonin(4) (5-HT(4)) receptor agonists are putative antidepressants with a rapid onset of action. Neuron 55(5):712–725PubMedGoogle Scholar
  51. MacDonald E, Scheinin M (1995) Distribution and pharmacology of alpha 2-adrenoceptors in the central nervous system. J Physiol Pharmacol 46(3):241–258PubMedGoogle Scholar
  52. Mahe C, Loetscher E, Feuerbach D, Muller W, Seiler MP, Schoeffter P (2004) Differential inverse agonist efficacies of SB-258719, SB-258741 and SB-269970 at human recombinant serotonin 5-HT7 receptors. Eur J Pharmacol 495(2–3):97–102PubMedGoogle Scholar
  53. Marien MR, Colpaert FC, Rosenquist AC (2004) Noradrenergic mechanisms in neurodegenerative diseases: a theory. Brain Res Rev 45:38–78PubMedGoogle Scholar
  54. Martelle JL, Nader MA (2008) A review of the discovery, pharmacological characterization, and behavioral effects of the dopamine D2-like receptor antagonist eticlopride. CNS Neurosci Ther 14(3):248–262PubMedCentralPubMedGoogle Scholar
  55. Martin P, Lemonier F (1994) Interet des recepteurs serotoninergiques de type 2: 5HT 2a et 5HT 2c, dans les troubles depressifs: action de la medifoxamine. L’encéphale 20:427–435PubMedGoogle Scholar
  56. Meitzen J, Luoma JI, Stern CM, Mermelstein PG (2011) Alpha1-adrenergic receptors activate two distinct signaling pathways in striatal neurons. J Neurochem 116(6):984–995PubMedCentralPubMedGoogle Scholar
  57. Meneses A (1999) 5-HT system and cognition. Neurosci Biobehav Rev 23(8):1111–1125PubMedGoogle Scholar
  58. Mesulam MM (1998) From sensation to cognition. Brain 121(6):1013–1052PubMedGoogle Scholar
  59. Meunier JM, Shvaloff A (1995) Neurotransmetteurs: bases neurobiologiques et pharmacologiques. Editions Masson, ParisGoogle Scholar
  60. Millar NS, Gotti C (2009) Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacology 56(1):237–246PubMedGoogle Scholar
  61. Mirza NR, Larsen JS, Mathiasen C et al (2008) NS11394 [3’-[5-(1-hydroxy-1-methyl-ethyl)-benzoimidazol-1-yl]-biphenyl-2-carbonitrile], a unique subtype-selective GABAA receptor positive allosteric modulator: in vitro actions, pharmacokinetic properties and in vivo anxiolytic efficacy. J Pharmacol Exp Ther 327(3):954–968PubMedGoogle Scholar
  62. Mlinar B, Mascalchi S, Mannaioni G, Morini R, Corradetti R (2006) 5-HT4 receptor activation induces long-lasting EPSP-spike potentiation in CA1 pyramidal neurons. Eur J Neurosci 24(3):719–731PubMedGoogle Scholar
  63. Mohler EG, Shacham S, Noiman S et al (2007) VRX-03011, a novel 5-HT4 agonist, enhances memory and hippocampal acetylcholine efflux. Neuropharmacology 53(4):563–573PubMedGoogle Scholar
  64. Momiyama T (2010) Developmental increase in D1-like dopamine receptor-mediated inhibition of glutamatergic transmission through P/Q-type channel regulation in the basal forebrain of rats. Eur J Neurosci 32(4):579–590PubMedGoogle Scholar
  65. Nasser Y, Ho W, Sharkey KA (2006) Distribution of adrenergic receptors in the enteric nervous system of the guinea pig, mouse, and rat. J Comp Neurol 495(5):529–553PubMedGoogle Scholar
  66. Nelson DL (2004) 5-HT5 receptors. Current drug targets. CNS Neurol Disord 3(1):53–58Google Scholar
  67. O’Keefe GC, Barker RA, Caldwell MA (2009) Dopaminergic modulation of neurogenesis in the subventricular zone of the adult brain. Cell Cycle 8(18):2888–2894Google Scholar
  68. Palma E, Conti L, Roseti C, Limatola C (2012) Novel approaches to study the involvement of a7-nAChR in human diseases. Curr Drug Targets 13:579–586PubMedGoogle Scholar
  69. Parga J, Rodriguez-Pallares J, Munoz A, Guerra MJ, Labandeira-Garcia JL (2007) Serotonin decreases generation of dopaminergic neurons from mesencephalic precursors via serotonin type 7 and type 4 receptors. Dev Neurobiol 67(1):10–22PubMedGoogle Scholar
  70. Parri HR, Hernandez CM, Dineley KT (2011) Research update: alpha7 nicotinic acetylcholine receptor mechanisms in Alzheimer’s disease. Biochem Pharmacol 82(8):931–942PubMedGoogle Scholar
  71. Parsons CG (2001) NMDA receptors as targets for drug action in neuropathic pain. Eur J Pharmacol 429(1–3):71–78PubMedGoogle Scholar
  72. Patenaude C, Chapman CA, Bertrand S, Congar P, Lacaille JC (2003) GABAB receptor- and metabotropic glutamate receptor-dependent cooperative long-term potentiation of rat hippocampal GABAA synaptic transmission. J Physiol 553(Pt 1):155–167PubMedCentralPubMedGoogle Scholar
  73. Quik M, Huang LZ, Parameswaran N, Bordia T, Campos C, Perez XA (2009) Multiple roles for nicotine in Parkinson’s disease. Biochem Pharmacol 78(7):677–685PubMedCentralPubMedGoogle Scholar
  74. Ramos BP, Arnsten AF (2007) Adrenergic pharmacology and cognition: focus on the prefrontal cortex. Pharmacol Ther 113(3):523–536PubMedCentralPubMedGoogle Scholar
  75. Reever CM, Ferrari-DiLeo G, Flynn DD (1997) The M5 (m5) receptor subtype: fact or fiction ? Life Sci 60(13–14):1105–1112PubMedGoogle Scholar
  76. Reis GM, Duarte ID (2006) Baclofen, an agonist at peripheral GABAB receptors, induces antinociception via activation of TEA-sensitive potassium channels. Br J Pharmacol 149(6):733–739PubMedCentralPubMedGoogle Scholar
  77. Restivo L, Roman F, Dumuis A, Bockaert J, Marchetti E, Ammassari-Teule M (2008) The promnesic effect of G-protein-coupled 5-HT4 receptors activation is mediated by a potentiation of learning induced spine growth in the mouse hippocampus. Neuropsychopharmacology 33(10):2427–2434PubMedGoogle Scholar
  78. Riccioni T (2011) 5-HT6 receptor characterization. Int Rev Neurobiol 94:67–88Google Scholar
  79. Saunders C, Limbird LE (1999) Localization and trafficking of alpha2-adrenergic receptor subtypes in cells and tissues. Pharmacol Ther 84(2):193–205PubMedGoogle Scholar
  80. Schaffhauser H, Mathiasen JR, Dicamillo A et al (2009) Dimebolin is a 5-HT6 antagonist with acute cognition enhancing activities. Biochem Pharmacol 78(8):1035–1042PubMedGoogle Scholar
  81. Schechter LE, Lin Q, Smith DL et al (2008) Neuropharmacological profile of novel and selective 5-HT6 receptor agonists: WAY-181187 and WAY-208466. Neuropsychopharmacology 33(6):1323–1335PubMedGoogle Scholar
  82. Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221(2):555–563PubMedGoogle Scholar
  83. Schmitt KC, Reith ME (2010) Regulation of the dopamine transporter: aspects relevant to psychostimulant drugs of abuse. Ann NY Acad Sci 1187:316–340PubMedGoogle Scholar
  84. Shen KZ, Johnson SW (1997) Presynaptic GABAB and adenosine A1 receptors regulate synaptic transmission to rat substantia nigra reticulata neurones. J Physiol 505(1):153–163PubMedCentralPubMedGoogle Scholar
  85. Slassi A, Methvin I, Xin T (2004) Recent progress in 5-HT7 receptors: potential treatment of central and peripheral nervous system diseases. Expert Opin Ther Pat 14:1009–1027Google Scholar
  86. Sotoyama H, Zheng Y, Iwakura Y et al (2011) Pallidal hyperdopaminergic innervation underlying D2 receptor-dependent behavioral deficits in the schizophrenia animal model established by EGF. PLoS One 6(10):e25831PubMedCentralPubMedGoogle Scholar
  87. Sulzer D (2011) How addictive drugs disrupt presynaptic dopamine neurotransmission. Neuron 69(4):628–649PubMedCentralPubMedGoogle Scholar
  88. Sun W (2011) Dopamine neurons in the ventral tegmental area: drug-induced synaptic plasticity and its role in relapse to drug-seeking behavior. Curr Drug Abuse Rev 4(4):270–285PubMedGoogle Scholar
  89. Sun L, Chiu D, Kowal D et al (2004) Characterization of two novel N-methyl-d-aspartate antagonists: EAA-090 (2-[8,9-dioxo-2,6-diazabicyclo [5.2.0]non-1(7)-en2-yl]ethylphosphonic acid) and EAB-318 (R-alpha-amino-5-chloro-1-(phosphonomethyl)-1H-benzimidazole-2-propanoic acid hydrochloride). J Pharmacol Exp Ther 310(2):563–750PubMedGoogle Scholar
  90. Thomas DR (2006) 5-ht5A receptors as a therapeutic target. Pharmacol Ther 111(3):707–714PubMedGoogle Scholar
  91. Thomas DR, Hagan JJ (2004) 5-HT7 receptors. Current drug targets. CNS Neurol Disord 3:81–90Google Scholar
  92. Thomas DR, Melotto S, Massagrande M et al (2003) SB-656104-A, a novel selective 5-HT7 receptor antagonist, modulates REM sleep in rats. Br J Pharmacol 139:705–714PubMedCentralPubMedGoogle Scholar
  93. Thomsen WJ, Grottick AJ, Menzaghi F et al (2008) Lorcaserin, a novel selective human 5-hydroxytryptamine2C agonist: in vitro and in vivo pharmacological characterization. J Pharmacol Exp Ther 325(2):577–587PubMedGoogle Scholar
  94. Tuesta LM, Fowler CD, Kenny PJ (2011) Recent advances in understanding nicotinic receptor signaling mechanisms that regulate drug self-administration behavior. Biochem Pharmacol 82(8):984–995PubMedCentralPubMedGoogle Scholar
  95. Van Veldhuizen MJA, Feenstra MGP, Heinsbroek RPW, Boer GJ (1993) In vivo microdialysis of noradrenaline overflow: effects of alpha-adrenoceptor agonists and antagonists measured by cumulative concentration response curves. Br J Pharmacol 109:655–660PubMedCentralPubMedGoogle Scholar
  96. Wallace TL, Porter RH (2011) Targeting the nicotinic alpha7 acetylcholine receptor to enhance cognition in disease. Biochem Pharmacol 82(8):891–903PubMedGoogle Scholar
  97. Weiss B, Alt A, Ogden AM et al (2006) Pharmacological characterization of the competitive GLUK5 receptor antagonist decahydroisoquinoline LY466195 in vitro and in vivo. J Pharmacol Exp Ther 318(2):772–781PubMedGoogle Scholar
  98. Wilson JM, Sanyal S, Van Tol HH (1998) Dopamine D2 and D4 receptor ligands: relation to antipsychotic action. Eur J Pharmacol 351(3):273–286PubMedGoogle Scholar
  99. Xie A, Song X, Ripps H, Qian H (2008) Cyclothiazide: a subunit-specific inhibitor of GABAC receptors. J Physiol 586(Pt 11):2743–2752PubMedCentralPubMedGoogle Scholar
  100. Yang L, Omori K, Omori K, Otani H, Suzukawa J, Inagaki C (2003) GABAC receptor agonist suppressed ammonia-induced apoptosis in cultured rat hippocampal neurons by restoring phosphorylated BAD level. J Neurochem 87(3):791–800PubMedGoogle Scholar
  101. Yang JC, Fan XL, Song XA, Li Q (2008) The role of different glutamate receptors in the mediation of glutamate-evoked excitation of red nucleus neurons after simulated microgravity in rat. Neurosci Lett 448(3):255–259PubMedGoogle Scholar
  102. Zigmond MJ, Stricker EM (1984) Parkinson’s disease: studies with an animal model. Life Sci 35(1):5–18PubMedGoogle Scholar

Copyright information

© Springer-Verlag France 2014

Authors and Affiliations

  • Barbara Ferry
    • 1
  • Damien Gervasoni
    • 1
  • Catherine Vogt
    • 2
  1. 1.Lyon Neuroscience Research Centre CNRS UMR 5292–INSERM U 1028Université Claude Bernard Lyon 1LyonFrance
  2. 2.Université Claude Bernard Lyon 1LyonFrance

Personalised recommendations