Skip to main content

Wnt/Frizzled Signaling in the Vasculature

  • Chapter
  • First Online:
Molecular Mechanisms of Angiogenesis

Abstract

Signaling, by the Wnt family of secreted glycolipoproteins, is one of the fundamental mechanisms that direct cell proliferation, polarity, and fate determination during embryonic development and tissue homeostasis. Recent advances in vascular biology highlight important roles for multiple components of the Wnt-signaling pathway in regulating differential behavior and/or cell functions during vascular development. The canonical Wnt pathway, which has been well characterized, functions by regulating the amount of the transcriptional coactivator ß-catenin, which in turn controls key developmental gene expression programs. Wnt also activates a number of noncanonical signaling pathways that are independent of ß-catenin. In this review, we report several novel findings regarding the molecular role of Wnt signaling during both vascular development and pathological angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8:464–478

    CAS  PubMed  Google Scholar 

  • Ahn VE, Chu ML, Choi HJ, Tran D, Abo A, Weis WI (2011) Structural basis of Wnt signaling inhibition by Dickkopf binding to LRP5/6. Dev Cell 21:862–873

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aicher A, Kollet O, Heeschen C, Liebner S, Urbich C, Ihling C et al (2008) The Wnt antagonist Dickkopf-1 mobilizes vasculogenic progenitor cells via activation of the bone marrow endosteal stem cell niche. Circ Res 103:796–803

    CAS  PubMed  Google Scholar 

  • Angers S, Moon RT (2009) Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 10:468–477

    CAS  PubMed  Google Scholar 

  • Aoki M, Mieda M, Ikeda T, Hamada Y, Nakamura H, Okamoto H (2007) R-spondin3 is required for mouse placental development. Dev Biol 301:218–226

    CAS  PubMed  Google Scholar 

  • Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C et al (2010) Pericytes regulate the blood-brain barrier. Nature 468:557–561

    CAS  PubMed  Google Scholar 

  • Ashcroft GS, Yang X, Glick AB, Weinstein M, Letterio JL, Mizel DE et al (1999) Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol 1:260–266

    CAS  PubMed  Google Scholar 

  • Barandon L, Couffinhal T, Ezan J, Dufourcq P, Costet P, Alzieu P et al (2003) Reduction of infarct size and prevention of cardiac rupture in transgenic mice overexpressing FrzA. Circulation 108:2282–2289

    CAS  PubMed  Google Scholar 

  • Barandon L, Casassus F, Leroux L, Moreau C, Allieres C, Lamaziere JM et al (2011) Secreted frizzled-related protein-1 improves postinfarction scar formation through a modulation of inflammatory response. Arterioscler Thromb Vasc Biol 31:e80–e87

    CAS  PubMed  Google Scholar 

  • Barcelos LS, Duplaa C, Krankel N, Graiani G, Invernici G, Katare R et al (2009) Human CD133+ progenitor cells promote the healing of diabetic ischemic ulcers by paracrine stimulation of angiogenesis and activation of Wnt signaling. Circ Res 104:1095–1102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Billiard J, Way DS, Seestaller-Wehr LM, Moran RA, Mangine A, Bodine PV (2005) The orphan receptor tyrosine kinase Ror2 modulates canonical Wnt signaling in osteoblastic cells. Mol Endocrinol 19:90–101

    CAS  PubMed  Google Scholar 

  • Blankesteijn WM, van Gijn ME, Essers-Janssen YP, Daemen MJ, Smits JF (2000) Beta-catenin, an inducer of uncontrolled cell proliferation and migration in malignancies, is localized in the cytoplasm of vascular endothelium during neovascularization after myocardial infarction. Am J Pathol 157:877–883

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blumenthal A, Ehlers S, Lauber J, Buer J, Lange C, Goldmann T et al (2006) The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. Blood 108:965–973

    CAS  PubMed  Google Scholar 

  • Bourhis E, Tam C, Franke Y, Bazan JF, Ernst J, Hwang J et al (2010) Reconstitution of a frizzled8.Wnt3a.LRP6 signaling complex reveals multiple Wnt and Dkk1 binding sites on LRP6. J Biol Chem 285:9172–9179

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bovolenta P, Esteve P, Ruiz JM, Cisneros E, Lopez-Rios J (2008) Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J Cell Sci 121:737–746

    CAS  PubMed  Google Scholar 

  • Cattelino A, Liebner S, Gallini R, Zanetti A, Balconi G, Corsi A et al (2003) The conditional inactivation of the beta-catenin gene in endothelial cells causes a defective vascular pattern and increased vascular fragility. J Cell Biol 162:1111–1122

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Y, Hu Y, Lu K, Flannery JG, Ma JX (2007) Very low density lipoprotein receptor, a negative regulator of the wnt signaling pathway and choroidal neovascularization. J Biol Chem 282:34420–34428

    CAS  PubMed  Google Scholar 

  • Chen J, Stahl A, Krah NM, Seaward MR, Dennison RJ, Sapieha P et al (2011) Wnt signaling mediates pathological vascular growth in proliferative retinopathy. Circulation 124:1871–1881

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng CW, Yeh JC, Fan TP, Smith SK, Charnock-Jones DS (2008) Wnt5a-mediated non-canonical Wnt signalling regulates human endothelial cell proliferation and migration. Biochem Biophys Res Commun 365:285–290

    CAS  PubMed  Google Scholar 

  • Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480

    CAS  PubMed  Google Scholar 

  • Corada M, Nyqvist D, Orsenigo F, Caprini A, Giampietro C, Taketo MM et al (2010) The Wnt/beta-catenin pathway modulates vascular remodeling and specification by upregulating Dll4/Notch signaling. Dev Cell 18:938–949

    CAS  PubMed  Google Scholar 

  • Cross JC, Nakano H, Natale DR, Simmons DG, Watson ED (2006) Branching morphogenesis during development of placental villi. Differentiation 74:393–401

    CAS  PubMed  Google Scholar 

  • Daneman R, Agalliu D, Zhou L, Kuhnert F, Kuo CJ, Barres BA (2009) Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc Natl Acad Sci U S A 106:641–646

    CAS  PubMed Central  PubMed  Google Scholar 

  • Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468:562–566

    CAS  PubMed Central  PubMed  Google Scholar 

  • Descamps B, Sewduth R, Ferreira Tojais N, Jaspard B, Reynaud A, Sohet F et al (2012) Frizzled 4 regulates arterial network organization through noncanonical Wnt/planar cell polarity signaling. Circ Res 110:47–58

    CAS  PubMed  Google Scholar 

  • Dissanayake SK, Wade M, Johnson CE, O’Connell MP, Leotlela PD, French AD et al (2007) The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J Biol Chem 282:17259–17271

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dufourcq P, Couffinhal T, Ezan J, Barandon L, Moreau M, Daret D et al (2002) FrzA, a secreted frizzled related protein, induced angiogenic response. Circulation 106:3097–3103

    PubMed  Google Scholar 

  • Dufourcq P, Leroux L, Ezan J, Descamps B, Lamaziere JM, Costet P et al (2008) Regulation of endothelial cell cytoskeletal reorganization by a secreted frizzled-related protein-1 and frizzled 4- and frizzled 7-dependent pathway: role in neovessel formation. Am J Pathol 172:37–49

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duplaa C, Jaspard B, Moreau C, D’Amore PA (1999) Identification and cloning of a secreted protein related to the cysteine-rich domain of frizzled. Evidence for a role in endothelial cell growth control. Circ Res 84:1433–1445

    CAS  PubMed  Google Scholar 

  • Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S et al (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116:829–840

    CAS  PubMed Central  PubMed  Google Scholar 

  • Felcht M, Luck R, Schering A, Seidel P, Srivastava K, Hu J et al (2012) Angiopoietin-2 differentially regulates angiogenesis through TIE2 and integrin signaling. J Clin Invest 122:1991–2005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Florian MC, Nattamai KJ, Dorr K, Marka G, Uberle B, Vas V, et al (2013) A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing. Nature 503:392–396

    Google Scholar 

  • Galceran J, Farinas I, Depew MJ, Clevers H, Grosschedl R (1999) Wnt3a/–like phenotype and limb deficiency in Lef1(−/−)Tcf1(−/−) mice. Genes Dev 13:709–717

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gao B (2012) Wnt regulation of planar cell polarity (PCP). Curr Top Dev Biol 101:263–295

    CAS  PubMed  Google Scholar 

  • Gao C, Chen YG (2010) Dishevelled: the hub of Wnt signaling. Cell Signal 22:717–727

    CAS  PubMed  Google Scholar 

  • Gessert S, Kuhl M (2010) The multiple phases and faces of wnt signaling during cardiac differentiation and development. Circ Res 107:186–199

    CAS  PubMed  Google Scholar 

  • Goodwin AM, Sullivan KM, D’Amore PA (2006) Cultured endothelial cells display endogenous activation of the canonical Wnt signaling pathway and express multiple ligands, receptors, and secreted modulators of Wnt signaling. Dev Dyn 235:3110–3120

    CAS  PubMed  Google Scholar 

  • Goren I, Allmann N, Yogev N, Schurmann C, Linke A, Holdener M et al (2009) A transgenic mouse model of inducible macrophage depletion: effects of diphtheria toxin-driven lysozyme M-specific cell lineage ablation on wound inflammatory, angiogenic, and contractive processes. Am J Pathol 175:132–147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Graef IA, Chen F, Chen L, Kuo A, Crabtree GR (2001) Signals transduced by Ca(2+)/calcineurin and NFATc3/c4 pattern the developing vasculature. Cell 105:863–875

    CAS  PubMed  Google Scholar 

  • Green JL, Kuntz SG, Sternberg PW (2008) Ror receptor tyrosine kinases: orphans no more. Trends Cell Biol 18:536–544

    CAS  PubMed  Google Scholar 

  • Grumolato L, Liu G, Mong P, Mudbhary R, Biswas R, Arroyave R et al (2010) Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes Dev 24:2517–2530

    CAS  PubMed Central  PubMed  Google Scholar 

  • Halford MM, Stacker SA (2001) Revelations of the RYK receptor. Bioessays 23:34–45

    CAS  PubMed  Google Scholar 

  • Hammerlein A, Weiske J, Huber O (2005) A second protein kinase CK1-mediated step negatively regulates Wnt signalling by disrupting the lymphocyte enhancer factor-1/beta-catenin complex. Cell Mol Life Sci 62:606–618

    CAS  PubMed  Google Scholar 

  • Hayes M, Naito M, Daulat A, Angers S, Ciruna B (2013) Ptk7 promotes non-canonical Wnt/PCP-mediated morphogenesis and inhibits Wnt/beta-catenin-dependent cell fate decisions during vertebrate development. Development 140:1807–1818

    CAS  PubMed  Google Scholar 

  • He X, Saint-Jeannet J-P, Wang Y, Nathans J, Dawid J, Varmus H (1997) A member of the frizzled protein family mediating axis induction by Wnt-5A. Science 275:1652–1654

    CAS  PubMed  Google Scholar 

  • Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P et al (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445:776–780

    PubMed  Google Scholar 

  • Herr P, Hausmann G, Basler K (2012) WNT secretion and signalling in human disease. Trends Mol Med 18:483–493

    CAS  PubMed  Google Scholar 

  • Ho HY, Susman MW, Bikoff JB, Ryu YK, Jonas AM, Hu L et al (2012) Wnt5a-Ror-Dishevelled signaling constitutes a core developmental pathway that controls tissue morphogenesis. Proc Natl Acad Sci U S A 109:4044–4051

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu J, Dong A, Fernandez-Ruiz V, Shan J, Kawa M, Martinez-Anso E et al (2009) Blockade of Wnt signaling inhibits angiogenesis and tumor growth in hepatocellular carcinoma. Cancer Res 69:6951–6959

    CAS  PubMed  Google Scholar 

  • Hu Y, Chen Y, Lin M, Lee K, Mott RA, Ma JX (2013) Pathogenic role of the Wnt signaling pathway activation in laser-induced choroidal neovascularization. Invest Ophthalmol Vis Sci 54:141–154

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishikawa T, Tamai Y, Zorn AM, Yoshida H, Seldin MF, Nishikawa S et al (2001) Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placental angiogenesis. Development 128:25–33

    CAS  PubMed  Google Scholar 

  • Ishitani T, Ninomiya-Tsuji J, Nagai S, Nishita M, Meneghini M, Barker N et al (1999) The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. Nature 399:798–802

    CAS  PubMed  Google Scholar 

  • Ishitani T, Kishida S, Hyodo-Miura J, Ueno N, Yasuda J, Waterman M et al (2003) The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Mol Cell Biol 23:131–139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jenny A, Darken RS, Wilson PA, Mlodzik M (2003) Prickle and Strabismus form a functional complex to generate a correct axis during planar cell polarity signaling. EMBO J 22:4409–4420

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang M, Ku WY, Fu J, Offermanns S, Hsu W, Que J (2013) Gpr177 regulates pulmonary vasculature development. Development 140:3589–3594

    CAS  PubMed  Google Scholar 

  • Ju R, Cirone P, Lin S, Griesbach H, Slusarski DC, Crews CM (2010) Activation of the planar cell polarity formin DAAM1 leads to inhibition of endothelial cell proliferation, migration, and angiogenesis. Proc Natl Acad Sci U S A 107:6906–6911

    CAS  PubMed Central  PubMed  Google Scholar 

  • Junge HJ, Yang S, Burton JB, Paes K, Shu X, French DM et al (2009) TSPAN12 regulates retinal vascular development by promoting Norrin- but not Wnt-induced FZD4/beta-catenin signaling. Cell 139:299–311

    CAS  PubMed  Google Scholar 

  • Katso RM, Manek S, Ganjavi H, Biddolph S, Charnock MF, Bradburn M et al (2000) Overexpression of H-Ryk in epithelial ovarian cancer: prognostic significance of receptor expression. Clin Cancer Res 6:3271–3281

    CAS  PubMed  Google Scholar 

  • Kazanskaya O, Glinka A, del Barco BI, Stannek P, Niehrs C, Wu W (2004) R-Spondin2 is a secreted activator of Wnt/beta-catenin signaling and is required for Xenopus myogenesis. Dev Cell 7:525–534

    CAS  PubMed  Google Scholar 

  • Keeble TR, Cooper HM (2006) Ryk: a novel Wnt receptor regulating axon pathfinding. Int J Biochem Cell Biol 38:2011–2017

    CAS  PubMed  Google Scholar 

  • Keeble TR, Halford MM, Seaman C, Kee N, Macheda M, Anderson RB et al (2006) The Wnt receptor Ryk is required for Wnt5a-mediated axon guidance on the contralateral side of the corpus callosum. J Neurosci 26:5840–5848

    CAS  PubMed  Google Scholar 

  • Kim GH, Her JH, Han JK (2008) Ryk cooperates with Frizzled 7 to promote Wnt11-mediated endocytosis and is essential for Xenopus laevis convergent extension movements. J Cell Biol 182:1073–1082

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim J, Kim DW, Ha Y, Ihm MH, Kim H, Song K et al (2010) Wnt5a induces endothelial inflammation via beta-catenin-independent signaling. J Immunol 185:1274–1282

    CAS  PubMed  Google Scholar 

  • Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8:387–398

    CAS  PubMed  Google Scholar 

  • Krebs LT, Deftos ML, Bevan MJ, Gridley T (2001) The Nrarp gene encodes an ankyrin-repeat protein that is transcriptionally regulated by the Notch signaling pathway. Dev Biol 238:110–119

    CAS  PubMed  Google Scholar 

  • Kuhl M (2004) The WNT/calcium pathway: biochemical mediators, tools and future requirements. Front Biosci 9:967–974

    PubMed  Google Scholar 

  • Kuhl M, Sheldahl LC, Malbon CC, Moon RT (2000) Ca(2+)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J Biol Chem 275:12701–12711

    CAS  PubMed  Google Scholar 

  • Lee HK, Chauhan SK, Kay E, Dana R (2011) Flt-1 regulates vascular endothelial cell migration via a protein tyrosine kinase-7-dependent pathway. Blood 117:5762–5771

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leroux L, Descamps B, Tojais NF, Seguy B, Oses P, Moreau C et al (2010) Hypoxia preconditioned mesenchymal stem cells improve vascular and skeletal muscle fiber regeneration after ischemia through a Wnt4-dependent pathway. Mol Ther 18:1545–1552

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li L, Hutchins BI, Kalil K (2009) Wnt5a induces simultaneous cortical axon outgrowth and repulsive axon guidance through distinct signaling mechanisms. J Neurosci 29:5873–5883

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liebner S, Cattelino A, Gallini R, Rudini N, Iurlaro M, Piccolo S et al (2004) Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. J Cell Biol 166:359–367

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liebner S, Corada M, Bangsow T, Babbage J, Taddei A, Czupalla CJ et al (2008) Wnt/beta-catenin signaling controls development of the blood-brain barrier. J Cell Biol 183:409–417

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin S, Baye LM, Westfall TA, Slusarski DC (2010) Wnt5b-Ryk pathway provides directional signals to regulate gastrulation movement. J Cell Biol 190:263–278

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lindahl P, Johansson BR, Levéen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245

    CAS  PubMed  Google Scholar 

  • Liu C, Nathans J (2008) An essential role for frizzled 5 in mammalian ocular development. Development 135:3567–3576

    CAS  PubMed  Google Scholar 

  • Liu Y, Shi J, Lu CC, Wang ZB, Lyuksyutova AI, Song XJ et al (2005) Ryk-mediated Wnt repulsion regulates posterior-directed growth of corticospinal tract. Nat Neurosci 8:1151–1159

    CAS  PubMed  Google Scholar 

  • Liu Y, Rubin B, Bodine PV, Billiard J (2008) Wnt5a induces homodimerization and activation of Ror2 receptor tyrosine kinase. J Cell Biochem 105:497–502

    CAS  PubMed  Google Scholar 

  • Lobov IB, Rao S, Carroll TJ, Vallance JE, Ito M, Ondr JK et al (2005) WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature 437:417–421

    CAS  PubMed  Google Scholar 

  • Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD et al (2007) Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci U S A 104:3219–3224

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu W, Yamamoto V, Ortega B, Baltimore D (2004) Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell 119:97–108

    CAS  PubMed  Google Scholar 

  • Luhmann UF, Lin J, Acar N, Lammel S, Feil S, Grimm C et al (2005) Role of the Norrie disease pseudoglioma gene in sprouting angiogenesis during development of the retinal vasculature. Invest Ophthalmol Vis Sci 46:3372–3382

    PubMed  Google Scholar 

  • Maretto S, Cordenonsi M, Dupont S, Braghetta P, Broccoli V, Hassan AB et al (2003) Mapping Wnt/beta-catenin signaling during mouse development and in colorectal tumors. Proc Natl Acad Sci U S A 100:3299–3304

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin P, D’Souza D, Martin J, Grose R, Cooper L, Maki R et al (2003) Wound healing in the PU.1 null mouse–tissue repair is not dependent on inflammatory cells. Curr Biol 13:1122–1128

    CAS  PubMed  Google Scholar 

  • Masckauchan TN, Shawber CJ, Funahashi Y, Li CM, Kitajewski J (2005) Wnt/beta-catenin signaling induces proliferation, survival and interleukin-8 in human endothelial cells. Angiogenesis 8:43–51

    CAS  PubMed  Google Scholar 

  • Masckauchan TN, Agalliu D, Vorontchikhina M, Ahn A, Parmalee NL, Li CM et al (2006) Wnt5a signaling induces proliferation and survival of endothelial cells in vitro and expression of MMP-1 and Tie-2. Mol Biol Cell 17:5163–5172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuura K, Jigami T, Taniue K, Morishita Y, Adachi S, Senda T et al (2011) Identification of a link between Wnt/beta-catenin signalling and the cell fusion pathway. Nat Commun 2:548

    PubMed  Google Scholar 

  • Mikels AJ, Nusse R (2006) Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 4:e115

    PubMed Central  PubMed  Google Scholar 

  • Min JK, Park H, Choi HJ, Kim Y, Pyun BJ, Agrawal V et al (2011) The WNT antagonist Dickkopf2 promotes angiogenesis in rodent and human endothelial cells. J Clin Invest 121:1882–1893

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mirza R, DiPietro LA, Koh TJ (2009) Selective and specific macrophage ablation is detrimental to wound healing in mice. Am J Pathol 175:2454–2462

    CAS  PubMed Central  PubMed  Google Scholar 

  • Monkley SJ, Delaney SJ, Pennisi DJ, Christiansen JH, Wainwright BJ (1996) Targeted disruption of the Wnt2 gene results in placentation defects. Development 122:3343–3353

    CAS  PubMed  Google Scholar 

  • Montcouquiol M, Rachel RA, Lanford PJ, Copeland NG, Jenkins NA, Kelley MW (2003) Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature 423:173–177

    CAS  PubMed  Google Scholar 

  • Niehrs C (2006) Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 25:7469–7481

    CAS  PubMed  Google Scholar 

  • Nikopoulos K, Gilissen C, Hoischen A, van Nouhuys CE, Boonstra FN, Blokland EA et al (2010) Next-generation sequencing of a 40 Mb linkage interval reveals TSPAN12 mutations in patients with familial exudative vitreoretinopathy. Am J Hum Genet 86:240–247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nomachi A, Nishita M, Inaba D, Enomoto M, Hamasaki M, Minami Y (2008) Receptor tyrosine kinase Ror2 mediates Wnt5a-induced polarized cell migration by activating c-Jun N-terminal kinase via actin-binding protein filamin A. J Biol Chem 283:27973–27981

    CAS  PubMed  Google Scholar 

  • Ohlmann A, Seitz R, Braunger B, Seitz D, Bosl MR, Tamm ER (2010) Norrin promotes vascular regrowth after oxygen-induced retinal vessel loss and suppresses retinopathy in mice. J Neurosci 30:183–193

    CAS  PubMed  Google Scholar 

  • Paolinelli R, Corada M, Ferrarini L, Devraj K, Artus C, Czupalla CJ et al (2013) Wnt activation of immortalized brain endothelial cells as a tool for generating a standardized model of the blood brain barrier in vitro. PLoS One 8:e70233

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parr BA, Cornish VA, Cybulsky MI, McMahon AP (2001) Wnt7b regulates placental development in mice. Dev Biol 237:324–332

    CAS  PubMed  Google Scholar 

  • Paudyal A, Damrau C, Patterson VL, Ermakov A, Formstone C, Lalanne Z et al (2010) The novel mouse mutant, chuzhoi, has disruption of Ptk7 protein and exhibits defects in neural tube, heart and lung development and abnormal planar cell polarity in the ear. BMC Dev Biol 10:87

    PubMed Central  PubMed  Google Scholar 

  • Phng LK, Potente M, Leslie JD, Babbage J, Nyqvist D, Lobov I et al (2009) Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Dev Cell 16:70–82

    CAS  PubMed  Google Scholar 

  • Polakis P (2012) Wnt signaling in cancer. Cold Spring Harb Perspect Biol 4(5):a008052

    PubMed Central  PubMed  Google Scholar 

  • Poulter JA, Ali M, Gilmour DF, Rice A, Kondo H, Hayashi K et al (2010) Mutations in TSPAN12 cause autosomal-dominant familial exudative vitreoretinopathy. Am J Hum Genet 86:248–253

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pukrop T, Klemm F, Hagemann T, Gradl D, Schulz M, Siemes S et al (2006) Wnt 5a signaling is critical for macrophage-induced invasion of breast cancer cell lines. Proc Natl Acad Sci U S A 103:5454–5459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rao TP, Kuhl M (2010) An updated overview on Wnt signaling pathways: a prelude for more. Circ Res 106:1798–1806

    CAS  PubMed  Google Scholar 

  • Raz R, Stricker S, Gazzerro E, Clor JL, Witte F, Nistala H et al (2008) The mutation ROR2W749X, linked to human BDB, is a recessive mutation in the mouse, causing brachydactyly, mediating patterning of joints and modeling recessive Robinow syndrome. Development 135:1713–1723

    CAS  PubMed  Google Scholar 

  • Rehm HL, Zhang DS, Brown MC, Burgess B, Halpin C, Berger W et al (2002) Vascular defects and sensorineural deafness in a mouse model of Norrie disease. J Neurosci 22:4286–4292

    CAS  PubMed  Google Scholar 

  • Richter M, Gottanka J, May CA, Welge-Lussen U, Berger W, Lutjen-Drecoll E (1998) Retinal vasculature changes in Norrie disease mice. Invest Ophthalmol Vis Sci 39:2450–2457

    CAS  PubMed  Google Scholar 

  • Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    CAS  PubMed  Google Scholar 

  • Semenov MV, Tamai K, Brott BK, Kuhl M, Sokol S, He X (2001) Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr Biol 11:951–961

    CAS  PubMed  Google Scholar 

  • Sen M, Chamorro M, Reifert J, Corr M, Carson DA (2001) Blockade of Wnt-5A/frizzled 5 signaling inhibits rheumatoid synoviocyte activation. Arthritis Rheum 44:772–781

    CAS  PubMed  Google Scholar 

  • Seshagiri S, Stawiski EW, Durinck S, Modrusan Z, Storm EE, Conboy CB et al (2012) Recurrent R-spondin fusions in colon cancer. Nature 488:660–664

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shastry BS, Hejtmancik JF, Trese MT (1997) Identification of novel missense mutations in the Norrie disease gene associated with one X-linked and four sporadic cases of familial exudative vitreoretinopathy. Hum Mutat 9:396–401

    CAS  PubMed  Google Scholar 

  • Shin WS, Maeng YS, Jung JW, Min JK, Kwon YG, Lee ST (2008) Soluble PTK7 inhibits tube formation, migration, and invasion of endothelial cells and angiogenesis. Biochem Biophys Res Commun 371:793–798

    CAS  PubMed  Google Scholar 

  • Slusarski DC, Corces VG, Moon RT (1997) Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 390:410–413

    CAS  PubMed  Google Scholar 

  • Smith LE, Wesolowski E, McLellan A, Kostyk SK, D’Amato R, Sullivan R et al (1994) Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35:101–111

    CAS  PubMed  Google Scholar 

  • Sonderegger S, Husslein H, Leisser C, Knofler M (2007) Complex expression pattern of Wnt ligands and frizzled receptors in human placenta and its trophoblast subtypes. Placenta 28(Suppl A):S97–102

    Google Scholar 

  • Stefater JA 3rd, Lewkowich I, Rao S, Mariggi G, Carpenter AC, Burr AR et al (2011) Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells. Nature 474:511–515

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stefater JA 3rd, Rao S, Bezold K, Aplin AC, Nicosia RF, Pollard JW et al (2013) Macrophage Wnt-calcineurin-Flt1 signaling regulates mouse wound angiogenesis and repair. Blood 121:2574–2578

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stenman JM, Rajagopal J, Carroll TJ, Ishibashi M, McMahon J, McMahon AP (2008) Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science 322:1247–1250

    CAS  PubMed  Google Scholar 

  • Suchting S, Freitas C, le Noble F, Benedito R, Breant C, Duarte A et al (2007) The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci U S A 104:3225–3230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suehiro J, Hamakubo T, Kodama T, Aird WC, Minami T (2010) Vascular endothelial growth factor activation of endothelial cells is mediated by early growth response-3. Blood 115:2520–2532

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sunderkotter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C (1994) Macrophages and angiogenesis. J Leukoc Biol 55:410–422

    CAS  PubMed  Google Scholar 

  • Takeuchi S, Takeda K, Oishi I, Nomi M, Ikeya M, Itoh K et al (2000) Mouse Ror2 receptor tyrosine kinase is required for the heart development and limb formation. Genes Cells 5:71–78

    CAS  PubMed  Google Scholar 

  • Tissir F, Goffinet AM (2010) Planar cell polarity signaling in neural development. Curr Opin Neurobiol 20:572–577

    CAS  PubMed  Google Scholar 

  • Tokunaga CC, Chen YH, Dailey W, Cheng M, Drenser KA (2013) Retinal vascular rescue of oxygen-induced retinopathy in mice by norrin. Invest Ophthalmol Vis Sci 54:222–229

    CAS  PubMed  Google Scholar 

  • Toomes C, Bottomley HM, Jackson RM, Towns KV, Scott S, Mackey DA et al (2004) Mutations in LRP5 or FZD4 underlie the common familial exudative vitreoretinopathy locus on chromosome 11q. Am J Hum Genet 74:721–730

    CAS  PubMed Central  PubMed  Google Scholar 

  • Topol L, Jiang X, Choi H, Garrett-Beal L, Carolan PJ, Yang Y (2003) Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J Cell Biol 162:899–908

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y (2009) Wnt/Planar cell polarity signaling: a new paradigm for cancer therapy. Mol Cancer Ther 8:2103–2109

    CAS  PubMed  Google Scholar 

  • Wang Y, Guo N, Nathans J (2006) The role of Frizzled3 and Frizzled6 in neural tube closure and in the planar polarity of inner-ear sensory hair cells. J Neurosci 26:2147–2156

    CAS  PubMed  Google Scholar 

  • Wang Y, Rattner A, Zhou Y, Williams J, Smallwood PM, Nathans J (2012) Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity. Cell 151:1332–1344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Westfall TA, Brimeyer R, Twedt J, Gladon J, Olberding A, Furutani-Seiki M et al (2003) Wnt-5/pipetail functions in vertebrate axis formation as a negative regulator of Wnt/beta-catenin activity. J Cell Biol 162:889–898

    CAS  PubMed Central  PubMed  Google Scholar 

  • Willert K, Jones KA (2006) Wnt signaling: is the party in the nucleus? Genes Dev 20:1394–1404

    CAS  PubMed  Google Scholar 

  • Wright M, Aikawa M, Szeto W, Papkoff J (1999) Identification of a Wnt-responsive signal transduction pathway in primary endothelial cells. Biochem Biophys Res Commun 263:384–388

    CAS  PubMed  Google Scholar 

  • Xavier CP, Melikova M, Chuman Y, Uren A, Baljinnyam B,Rubin JS (2014) Secreted Frizzled-related protein potentiation versus inhibition of Wnt3a/beta-catenin signaling. Cell Signal 26:94–101

    Google Scholar 

  • Xia CH, Yablonka-Reuveni Z, Gong X (2010) LRP5 is required for vascular development in deeper layers of the retina. PLoS One 5:e11676

    PubMed Central  PubMed  Google Scholar 

  • Xie H, Tranguch S, Jia X, Zhang H, Das SK, Dey SK et al (2008) Inactivation of nuclear Wnt-beta-catenin signaling limits blastocyst competency for implantation. Development 135:717–727

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Q, Wang Y, Dabdoub A, Smallwood PM, Williams J, Woods C et al (2004) Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 116:883–895

    CAS  PubMed  Google Scholar 

  • Yamamizu K, Matsunaga T, Uosaki H, Fukushima H, Katayama S, Hiraoka-Kanie M et al (2010) Convergence of Notch and beta-catenin signaling induces arterial fate in vascular progenitors. J Cell Biol 189:325–338

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto H, Komekado H, Kikuchi A (2006) Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of beta-catenin. Dev Cell 11:213–223

    CAS  PubMed  Google Scholar 

  • Yancopoulos GD, Klagsbrun M, Folkman J (1998) Vasculogenesis, angiogenesis, and growth factors: ephrins enter the fray at the border. Cell 93:661–664

    CAS  PubMed  Google Scholar 

  • Yates LL, Dean CH (2011) Planar polarity: a new player in both lung development and disease. Organogenesis 7:209–216

    PubMed Central  PubMed  Google Scholar 

  • Ye X, Wang Y, Cahill H, Yu M, Badea TC, Smallwood PM et al (2009) Norrin, frizzled-4, and Lrp5 signaling in endothelial cells controls a genetic program for retinal vascularization. Cell 139:285–298

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yen WW, Williams M, Periasamy A, Conaway M, Burdsal C, Keller R et al (2009) PTK7 is essential for polarized cell motility and convergent extension during mouse gastrulation. Development 136:2039–2048

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshikawa S, McKinnon RD, Kokel M, Thomas JB (2003) Wnt-mediated axon guidance via the Drosophila Derailed receptor. Nature 422:583–588

    CAS  PubMed  Google Scholar 

  • Yu A, Xing Y, Harrison SC, Kirchhausen T (2010) Structural analysis of the interaction between Dishevelled2 and clathrin AP-2 adaptor, a critical step in noncanonical Wnt signaling. Structure 18:1311–1320

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zallen JA (2007) Planar polarity and tissue morphogenesis. Cell 129:1051–1063

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile Duplàa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag France

About this chapter

Cite this chapter

Couffinhal, T., Dufourcq, P., Duplàa, C. (2014). Wnt/Frizzled Signaling in the Vasculature. In: Feige, JJ., Pagès, G., Soncin, F. (eds) Molecular Mechanisms of Angiogenesis. Springer, Paris. https://doi.org/10.1007/978-2-8178-0466-8_4

Download citation

Publish with us

Policies and ethics