Skip to main content

VEGF-A Splice Variants: Do They Play a Role in Tumor Responses to Anti-angiogenic Therapies?

  • Chapter
  • First Online:
Molecular Mechanisms of Angiogenesis

Abstract

It has been known for two decades that VEGF-A encodes several VEGF-A splice variants, which are termed VEGFxxx, according to the total number of amino acids in the mature protein. To date, nine VEGFxxx isoforms have been described, displaying different biodistributions and pro-angiogenic activities. Adding another level of complexity to VEGF-A biology, a new family of VEGF-A isoforms, termed VEGFxxxb, which exert anti-angiogenic functions, was discovered in 2002 and only differs from VEGFxxx polypeptides with regard to their six C-terminal amino acids. Therefore, reminiscent of what is observed, for instance, during apoptosis, the alternative splicing of VEGF-A pre-mRNA generates two types of isoforms with antagonistic biological functions. As anti-angiogenic therapies target both the VEGFxxx and VEGFxxxb families, VEGF-A pre-mRNA splicing may therefore impact tumor responses to these therapies. Consistently, recent clinical studies have highlighted VEGF-A splice variants as predictive biomarkers in response to bevacizumab. Hence, identification of the upstream signaling pathways that control VEGF-A pre-mRNA splicing, better characterization of the specific biological functions played by each VEGF-A splice variant, and analysis of the impact of anti-angiogenic therapies on VEGF-A pre-mRNA splicing are critical goals. The purpose of this chapter is to summarize the current knowledge in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amin EM, Oltean S, Hua J et al (2011) WT1 mutants reveal SRPK1 to be a downstream angiogenesis target by altering VEGF splicing. Cancer Cell 20:768–780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ancelin M, Buteau-Lozano H, Meduri G et al (2002) A dynamic shift of VEGF isoforms with a transient and selective progesterone-induced expression of VEGF189 regulates angiogenesis and vascular permeability in human uterus. Proc Natl Acad Sci U S A 99:6023–6028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ballmer-Hofer K, Andersson AE, Ratcliffe LE et al (2011) Neuropilin-1 promotes VEGFR-2 trafficking through Rab11 vesicles thereby specifying signal output. Blood 118:816–826

    Article  CAS  PubMed  Google Scholar 

  • Bates DO, Catalano PJ, Symonds KE et al (2012) Association between VEGF splice isoforms and progression-free survival in metastatic colorectal cancer patients treated with bevacizumab. Clin Cancer Res 18:6384–6391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bates DO, Cui TG, Doughty JM et al (2002) VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res 62: 4123–4131

    CAS  PubMed  Google Scholar 

  • Bates DO, MacMillan PP, Manjaly JG et al (2006) The endogenous anti-angiogenic family of splice variants of VEGF, VEGFxxxb, are down-regulated in pre-eclamptic placentae at term. Clin Sci (Lond) 110:575–585

    Article  CAS  Google Scholar 

  • Beazley-Long N, Hua J, Jehle T et al (2013) VEGF-A165b is an endogenous neuroprotective splice isoform of vascular endothelial growth factor A in vivo and in vitro. Am J Pathol 183:918–929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boudria A, Gout S, Keramidas M, Dermendjieva S, Coll JL, Lantuejoul S, Brambilla E, Gazzeri S and Eymin B. Pre-mRNA alternative splicing controls VEGF-A autocrine functions and response to Bevaizumab

    Google Scholar 

  • Brauer MJ, Zhuang G, Schmidt M et al (2013) Identification and analysis of in vivo VEGF downstream markers link VEGF pathway activity with efficacy of anti-VEGF therapies. Clin Cancer Res 19:3681–3692

    Article  CAS  PubMed  Google Scholar 

  • Catena R, Larzabal L, Larrayoz M et al (2010) VEGF(1)(2)(1)b and VEGF(1)(6)(5)b are weakly angiogenic isoforms of VEGF-A. Mol Cancer 9:320–327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Catena R, Muniz-Medina V, Moralejo B et al (2007) Increased expression of VEGF121/VEGF165-189 ratio results in a significant enhancement of human prostate tumor angiogenesis. Int J Cancer 120:2096–2109

    Article  CAS  PubMed  Google Scholar 

  • Cebe Suarez S, Pieren M, Cariolato L et al (2006) A VEGF-A splice variant defective for heparan sulfate and neuropilin-1 binding shows attenuated signaling through VEGFR-2. Cell Mol Life Sci 63:2067–2077

    Article  CAS  PubMed  Google Scholar 

  • Chen TT, Luque A, Lee S et al (2010) Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells. J Cell Biol 188:595–609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheung CY, Singh M, Ebaugh MJ et al (1995) Vascular endothelial growth factor gene expression in ovine placenta and fetal membranes. Am J Obstet Gynecol 173:753–759

    Article  CAS  PubMed  Google Scholar 

  • Ciura J, Jagodzinski PP (2010) Butyrate increases the formation of anti-angiogenic vascular endothelial growth factor variants in human lung microvascular endothelial cells. Mol Biol Rep 37: 3729–3734

    Article  CAS  PubMed  Google Scholar 

  • Cohen CD, Doran PP, Blattner SM et al (2005) Sam68-like mammalian protein 2, identified by digital differential display as expressed by podocytes, is induced in proteinuria and involved in splice site selection of vascular endothelial growth factor. J Am Soc Nephrol 16:1958–1965

    Article  CAS  PubMed  Google Scholar 

  • Cui TG, Foster RR, Saleem M et al (2004) Differentiated human podocytes endogenously express an inhibitory isoform of vascular endothelial growth factor (VEGF165b) mRNA and protein. Am J Physiol Renal Physiol 286:767–773

    Article  Google Scholar 

  • David CJ, Manley JL (2010) Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev 24:2343–2364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Delcombel R, Janssen L, Vassy R et al (2013) New prospects in the roles of the C-terminal domains of VEGF-A and their cooperation for ligand binding, cellular signaling and vessels formation. Angiogenesis 16:353–371

    Article  CAS  PubMed  Google Scholar 

  • Diaz R, Pena C, Silva J et al (2008) p73 Isoforms affect VEGF, VEGF165b and PEDF expression in human colorectal tumors: VEGF165b downregulation as a marker of poor prognosis. Int J Cancer 123:1060–1067

    Article  CAS  PubMed  Google Scholar 

  • Dowhan DH, Hong EP, Auboeuf D et al (2005) Steroid hormone receptor coactivation and alternative RNA splicing by U2AF65-related proteins CAPERalpha and CAPERbeta. Mol Cell 17: 429–439

    Article  CAS  PubMed  Google Scholar 

  • Edmond V, Brambilla C, Brambilla E et al (2011a) SRSF2 is required for sodium butyrate-mediated p21(WAF1) induction and premature senescence in human lung carcinoma cell lines. Cell Cycle 10:1968–1977

    Article  CAS  PubMed  Google Scholar 

  • Edmond V, Moysan E, Khochbin S et al (2011b) Acetylation and phosphorylation of SRSF2 control cell fate decision in response to cisplatin. EMBO J 30:510–523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elias AP, Dias S (2008) Microenvironment changes (in pH) affect VEGF alternative splicing. Cancer Microenviron 1:131–139

    Article  PubMed Central  PubMed  Google Scholar 

  • Fan F, Gray MJ, Dallas NA et al (2008) Effect of chemotherapeutic stress on induction of vascular endothelial growth factor family members and receptors in human colorectal cancer cells. Mol Cancer Ther 7:3064–3070

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Faure C, Linossier MT, Malaval L et al (2008) Mechanical signals modulated vascular endothelial growth factor-A (VEGF-A) alternative splicing in osteoblastic cells through actin polymerisation. Bone 42:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25:581–611

    Article  CAS  PubMed  Google Scholar 

  • Furumai R, Uchida K, Komi Y et al (2010) Spliceostatin A blocks angiogenesis by inhibiting global gene expression including VEGF. Cancer Sci 101:2483–2489

    Article  CAS  PubMed  Google Scholar 

  • Gammons MV, Federov O, Ivison D et al (2013) Topical anti-angiogenic SRPK1 inhibitors reduce choroidal neovascularization in rodent models of exudative-AMD. Invest Ophthalmol Vis Sci 54:6052–6062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gout S, Brambilla E, Boudria A et al (2012) Abnormal expression of the pre-mRNA splicing regulators SRSF1, SRSF2, SRPK1 and SRPK2 in non small cell lung carcinoma. PLoS One 7:e46539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grepin R, Guyot M, Jacquin M et al (2012) Acceleration of clear cell renal cell carcinoma growth in mice following bevacizumab/Avastin treatment: the role of CXCL cytokines. Oncogene 31:1683–1694

    Article  CAS  PubMed  Google Scholar 

  • Grunstein J, Masbad JJ, Hickey R et al (2000) Isoforms of vascular endothelial growth factor act in a coordinate fashion To recruit and expand tumor vasculature. Mol Cell Biol 20:7282–7291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grutzkau A, Kruger-Krasagakes S, Baumeister H et al (1998) Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF206. Mol Biol Cell 9:875–884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hamerlik P, Lathia JD, Rasmussen R et al (2012) Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J Exp Med 209:507–520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harper SJ, Bates DO (2008) VEGF-A splicing: the key to anti-angiogenic therapeutics? Nat Rev Cancer 8:880–887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hegde PS, Jubb AM, Chen D et al (2013) Predictive impact of circulating vascular endothelial growth factor in four phase III trials evaluating bevacizumab. Clin Cancer Res 19:929–937

    Article  CAS  PubMed  Google Scholar 

  • Houck KA, Ferrara N, Winer J et al (1991) The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol 5:1806–1814

    Article  CAS  PubMed  Google Scholar 

  • Houck KA, Leung DW, Rowland AM et al (1992) Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem 267:26031–26037

    CAS  PubMed  Google Scholar 

  • Jahangiri A, De Lay M, Miller LM et al (2013) Gene expression profile identifies tyrosine kinase c-Met as a targetable mediator of antiangiogenic therapy resistance. Clin Cancer Res 19: 773–1783

    Article  Google Scholar 

  • Jingjing L, Xue Y, Agarwal N et al (1999) Human Muller cells express VEGF183, a novel spliced variant of vascular endothelial growth factor. Invest Ophthalmol Vis Sci 40:752–759

    CAS  PubMed  Google Scholar 

  • Kawai H, Minamiya Y, Ito M et al (2008) VEGF121 promotes lymphangiogenesis in the sentinel lymph nodes of non-small cell lung carcinoma patients. Lung Cancer 59:41–47

    Article  PubMed  Google Scholar 

  • Kawamura H, Li X, Harper SJ et al (2008) Vascular endothelial growth factor (VEGF)-A165b is a weak in vitro agonist for VEGF receptor-2 due to lack of coreceptor binding and deficient regulation of kinase activity. Cancer Res 68:4683–4692

    Article  CAS  PubMed  Google Scholar 

  • Keyt BA, Berleau LT, Nguyen HV et al (1996) The carboxyl-terminal domain (111-165) of vascular endothelial growth factor is critical for its mitogenic potency. J Biol Chem 271:7788–7795

    Article  CAS  PubMed  Google Scholar 

  • Ladomery MR, Harper SJ, Bates DO (2007) Alternative splicing in angiogenesis: the vascular endothelial growth factor paradigm. Cancer Lett 249:133–142

    Article  CAS  PubMed  Google Scholar 

  • Lambrechts D, Lenz HJ, de Haas S et al (2013) Markers of response for the antiangiogenic agent bevacizumab. J Clin Oncol 31:1219–1230

    Article  CAS  PubMed  Google Scholar 

  • Li H, Yonekura H, Kim CH et al (2004) Possible participation of pICln in the regulation of angiogenesis through alternative splicing of vascular endothelial growth factor receptor mRNAs. Endothelium 11:293–300

    Article  CAS  PubMed  Google Scholar 

  • Li N, Kanda K, Fukumori T et al (2000) Expression of vascular endothelial growth factor isoforms and platelet-derived endothelial cell growth factor in bladder cancer. Urol Oncol 6:10–15

    Article  PubMed  Google Scholar 

  • Lichtenberger BM, Tan PK, Niederleithner H et al (2010) Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development. Cell 140:268–279

    Article  CAS  PubMed  Google Scholar 

  • Ljungberg B, Jacobsen J, Haggstrom-Rudolfssson S et al (2003) Tumour vascular endothelial growth factor (VEGF) mRNA in relation to serum VEGF protein levels and tumour progression in human renal cell carcinoma. Urol Res 31:335–340

    Article  CAS  PubMed  Google Scholar 

  • Lu KV, Chang JP, Parachoniak CA et al (2012) VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell 22:21–35

    Article  CAS  PubMed  Google Scholar 

  • Manetti M, Guiducci S, Romano E et al (2011) Overexpression of VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, leads to insufficient angiogenesis in patients with systemic sclerosis. Circ Res 109:e14–e26

    Article  CAS  PubMed  Google Scholar 

  • Matsuyama M, Chijiwa T, Inoue Y et al (2009) Alternative splicing variant of vascular endothelial growth factor-A is a critical prognostic factor in non-small cell lung cancer. Oncol Rep 22: 1407–1413

    CAS  PubMed  Google Scholar 

  • Merdzhanova G, Gout S, Keramidas M et al (2010) The transcription factor E2F1 and the SR protein SC35 control the ratio of pro-angiogenic versus antiangiogenic isoforms of vascular endothelial growth factor-A to inhibit neovascularization in vivo. Oncogene 29:5392–5403

    Article  CAS  PubMed  Google Scholar 

  • Miller-Kasprzak E, Jagodzinski PP (2008) 5-Aza-2′-deoxycytidine increases the expression of anti-angiogenic vascular endothelial growth factor 189b variant in human lung microvascular endothelial cells. Biomed Pharmacother 62:158–163

    Article  CAS  PubMed  Google Scholar 

  • Mineur P, Colige AC, Deroanne CF et al (2007) Newly identified biologically active and proteolysis-resistant VEGF-A isoform VEGF111 is induced by genotoxic agents. J Cell Biol 179:1261–1273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mourah S, Porcher R, Lescaille G et al (2009) Quantification of VEGF isoforms and VEGFR transcripts by qRT-PCR and their significance in acute myeloid leukemia. Int J Biol Markers 24:22–31

    CAS  PubMed  Google Scholar 

  • Muller YA, Li B, Christinger HW et al (1997) Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site. Proc Natl Acad Sci U S A 94:7192–7197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nikolinakos PG, Altorki N, Yankelevitz D et al (2010) Plasma cytokine and angiogenic factor profiling identifies markers associated with tumor shrinkage in early-stage non-small cell lung cancer patients treated with pazopanib. Cancer Res 70:2171–2179

    Article  CAS  PubMed  Google Scholar 

  • Nowak DG, Amin EM, Rennel ES et al (2010) Regulation of vascular endothelial growth factor (VEGF) splicing from pro-angiogenic to anti-angiogenic isoforms: a novel therapeutic strategy for angiogenesis. J Biol Chem 285:5532–5540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nowak DG, Woolard J, Amin EM et al (2008) Expression of pro- and anti-angiogenic isoforms of VEGF is differentially regulated by splicing and growth factors. J Cell Sci 121:3487–3495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohta Y, Endo Y, Tanaka M et al (1996) Significance of vascular endothelial growth factor messenger RNA expression in primary lung cancer. Clin Cancer Res 2:1411–1416

    CAS  PubMed  Google Scholar 

  • Oshika Y, Nakamura M, Tokunaga T et al (1998) Expression of cell-associated isoform of vascular endothelial growth factor 189 and its prognostic relevance in non-small cell lung cancer. Int J Oncol 12:541–544

    CAS  PubMed  Google Scholar 

  • Pajares MJ, Agorreta J, Larrayoz M et al (2012) Expression of tumor-derived vascular endothelial growth factor and its receptors is associated with outcome in early squamous cell carcinoma of the lung. J Clin Oncol 30:1129–1136

    Article  PubMed  Google Scholar 

  • Pan Q, Chanthery Y, Liang WC et al (2007a) Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell 11:53–67

    Article  CAS  PubMed  Google Scholar 

  • Pan Q, Chathery Y, Wu Y et al (2007b) Neuropilin-1 binds to VEGF121 and regulates endothelial cell migration and sprouting. J Biol Chem 282:24049–24056

    Article  CAS  PubMed  Google Scholar 

  • Pan Q, Shai O, Lee LJ et al (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415

    Article  CAS  PubMed  Google Scholar 

  • Peiris-Pages M, Harper SJ, Bates DO et al (2010) Balance of pro- versus anti-angiogenic splice isoforms of vascular endothelial growth factor as a regulator of neuroblastoma growth. J Pathol 222:138–147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Perrin RM, Konopatskaya O, Qiu Y et al (2005) Diabetic retinopathy is associated with a switch in splicing from anti- to pro-angiogenic isoforms of vascular endothelial growth factor. Diabetologia 48:2422–2427

    Article  CAS  PubMed  Google Scholar 

  • Plouet J, Moro F, Bertagnolli S et al (1997) Extracellular cleavage of the vascular endothelial growth factor 189-amino acid form by urokinase is required for its mitogenic effect. J Biol Chem 272:13390–13396

    Article  CAS  PubMed  Google Scholar 

  • Pritchard-Jones RO, Dunn DB, Qiu Y et al (2007) Expression of VEGF(xxx)b, the inhibitory isoforms of VEGF, in malignant melanoma. Br J Cancer 97:223–230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qiu Y, Hoareau-Aveilla C, Oltean S et al (2009) The anti-angiogenic isoforms of VEGF in health and disease. Biochem Soc Trans 37:1207–1213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ranpura V, Hapani S, Wu S (2011) Treatment-related mortality with bevacizumab in cancer patients: a meta-analysis. JAMA 305:487–494

    Article  CAS  PubMed  Google Scholar 

  • Rennel ES, Waine E, Guan H et al (2008) The endogenous anti-angiogenic VEGF isoform, VEGF165b inhibits human tumour growth in mice. Br J Cancer 98:1250–1257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rennel ES, Varey AH, Churchill AJ et al (2009) VEGF(121)b, a new member of the VEGF(xxx)b family of VEGF-A splice isoforms, inhibits neovascularisation and tumour growth in vivo. Br J Cancer 101:1183–1193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roskoski R Jr (2007) Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol 62:179–213

    Article  PubMed  Google Scholar 

  • Saito T, Takeda N, Amiya E et al (2013) VEGF-A induces its negative regulator, soluble form of VEGFR-1, by modulating its alternative splicing. FEBS Lett 587:2179–2185

    Article  CAS  PubMed  Google Scholar 

  • Schutz FA, Je Y, Richards CJ et al (2012) Meta-analysis of randomized controlled trials for the incidence and risk of treatment-related mortality in patients with cancer treated with vascular endothelial growth factor tyrosine kinase inhibitors. J Clin Oncol 30:871–877

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Zhao M, Xie WK et al (2013) Inhibition of neovascularization and expression shift of pro-/anti-angiogenic vascular endothelial growth factor isoforms after intravitreal bevacizumab injection in oxygen-induced-retinopathy mouse model. Chin Med J (Engl) 126:345–352

    CAS  Google Scholar 

  • Soker S, Miao HQ, Nomi M et al (2002) VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-receptor binding. J Cell Biochem 85: 357–368

    Article  CAS  PubMed  Google Scholar 

  • Tayama M, Furuhata T, Inafuku Y et al (2011) Vascular endothelial growth factor 165b expression in stromal cells and colorectal cancer. World J Gastroenterol 17:4867–4874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tozer GM, Akerman S, Cross NA et al (2008) Blood vessel maturation and response to vascular-disrupting therapy in single vascular endothelial growth factor-A isoform-producing tumors. Cancer Res 68:2301–2311

    Article  CAS  PubMed  Google Scholar 

  • Varey AH, Rennel ES, Qiu Y et al (2008) VEGF 165 b, an antiangiogenic VEGF-A isoform, binds and inhibits bevacizumab treatment in experimental colorectal carcinoma: balance of pro- and antiangiogenic VEGF-A isoforms has implications for therapy. Br J Cancer 98: 1366–1379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vincenti V, Cassano C, Rocchi M et al (1996) Assignment of the vascular endothelial growth factor gene to human chromosome 6p21.3. Circulation 93:1493–1495

    Article  CAS  PubMed  Google Scholar 

  • Vintonenko N, Pelaez-Garavito I, Buteau-Lozano H et al (2011) Overexpression of VEGF189 in breast cancer cells induces apoptosis via NRP1 under stress conditions. Cell Adh Migr 5:332–343

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang R, Crystal RG, Hackett NR et al (2009) Identification of an exonic splicing silencer in exon 6A of the human VEGF gene. BMC Mol Biol 10:103–109

    Article  PubMed Central  PubMed  Google Scholar 

  • Woolard J, Wang WY, Bevan HS et al (2004) VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res 64:7822–7835

    Article  CAS  PubMed  Google Scholar 

  • Yuan A, Lin CY, Chou CH et al (2001) Functional and structural characteristics of tumor angiogenesis in lung cancers overexpressing different VEGF isoforms assessed by DCE- and SSCE-MRI. PLoS One 6:e16062

    Article  Google Scholar 

  • Zygalaki E, Kaklamanis L, Nikolaou NI et al (2008) Expression profile of total VEGF, VEGF splice variants and VEGF receptors in the myocardium and arterial vasculature of diabetic and non-diabetic patients with coronary artery disease. Clin Biochem 41:82–87

    Article  CAS  PubMed  Google Scholar 

  • Zygalaki E, Tsaroucha EG, Kaklamanis L et al (2007) Quantitative real-time reverse transcription PCR study of the expression of vascular endothelial growth factor (VEGF) splice variants and VEGF receptors (VEGFR-1 and VEGFR-2) in non small cell lung cancer. Clin Chem 53: 1433–1439

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrice Eymin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag France

About this chapter

Cite this chapter

Eymin, B., Boudria, A., Abou-Faycal, C. (2014). VEGF-A Splice Variants: Do They Play a Role in Tumor Responses to Anti-angiogenic Therapies?. In: Feige, JJ., Pagès, G., Soncin, F. (eds) Molecular Mechanisms of Angiogenesis. Springer, Paris. https://doi.org/10.1007/978-2-8178-0466-8_21

Download citation

Publish with us

Policies and ethics