Skip to main content

Tumor Angiogenesis and Lymphangiogenesis: Microenvironmental Soil for Tumor Progression and Metastatic Dissemination

  • Chapter
  • First Online:
  • 1331 Accesses

Abstract

Growing tumors induce changes in their microenvironments that support tumor growth and cancer cell spreading to distant organs. One major change is the induction of angiogenesis and lymphangiogenesis, which are the formation of new blood or lymphatic vessels from preexisting ones, respectively. Metastasis is the main cause of death for cancer patients, and in order to metastasize, tumor cells must first migrate toward blood or lymphatic vessels and intravasate into these vessels. Newly formed tumor blood vessels display incomplete basement membrane, loosely associated pericytes, and leaky cell–cell junctions. The resulting hyperpermeability of tumor blood vessels facilitates tumor intravasation and creates a microenvironment characterized by hypoxia, acidity, and a high interstitial fluid pressure. These abnormalities affect immune cell infiltration, survival, and function favoring tumor growth. The rise of the interstitial fluid pressure leads to an increase of the draining flow from the tumor to the draining lymph node enhancing the attraction of tumor cells toward lymphatic vessels as well as their dissemination into the sentinel lymph node. The entry of tumor cells into lymphatic vessels is favored by chemokine gradients and by the architecture of these vessels. Both lymphangiogenesis and angiogenesis not only occur at the primary site but also at the metastatic sites allowing the development of tumor cells at the secondary site. Nowadays, lymphangiogenesis and angiogenesis are clearly considered as therapeutic targets to prevent tumor growth and metastasis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alitalo A, Detmar M (2012) Interaction of tumor cells and lymphatic vessels in cancer progression. Oncogene 31(42):4499–4508. doi:10.1038/onc.2011.602

    CAS  PubMed  Google Scholar 

  • Arjaans M, Oude Munnink TH, Oosting SF, Terwisscha van Scheltinga AG, Gietema JA, Garbacik ET, Timmer-Bosscha H, Lub-de Hooge MN, Schroder CP, de Vries EG (2013) Bevacizumab-induced normalization of blood vessels in tumors hampers antibody uptake. Cancer Res 73(11):3347–3355. doi:10.1158/0008-5472.CAN-12-3518

    CAS  PubMed  Google Scholar 

  • Avni R, Cohen B, Neeman M (2011) Hypoxic stress and cancer: imaging the axis of evil in tumor metastasis. NMR Biomed 24(6):569–581. doi:10.1002/nbm.1632

    CAS  PubMed Central  PubMed  Google Scholar 

  • Azzali G (2007) The modality of transendothelial passage of lymphocytes and tumor cells in the absorbing lymphatic vessel. Eur J Histochem 51(Suppl 1):73–77

    PubMed  Google Scholar 

  • Azzi S, Hebda JK, Gavard J (2013) Vascular permeability and drug delivery in cancers. Front Oncol 3:211. doi:10.3389/fonc.2013.00211

    PubMed Central  PubMed  Google Scholar 

  • Balsat C, Signolle N, Goffin F, Delbecque K, Plancoulaine B, Sauthier P, Samouëlian V, Béliard A, Munaut C, Foidart JM, Blacher S, Noël A, Kridelka F (2013) Improved computer assisted analysis of the global lymphatic network in human cervical tissues. Mod Pathol. doi:10.1038/modpathol.2013.195

  • Baker AM, Bird D, Lang G, Cox TR, Erler JT (2013) Lysyl oxidase enzymatic function increases stiffness to drive colorectal cancer progression through FAK. Oncogene 32(14):1863–1868. doi:10.1038/onc.2012.202

    CAS  PubMed  Google Scholar 

  • Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, Vestweber D, Corada M, Molendini C, Dejana E, McDonald DM (2007) Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med 204(10):2349–2362. doi:10.1084/jem.20062596. jem.20062596 [pii]

  • Baluk P, Hashizume H, McDonald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15(1):102–111. doi:10.1016/j.gde.2004.12.005

    CAS  PubMed  Google Scholar 

  • Bekes EM, Schweighofer B, Kupriyanova TA, Zajac E, Ardi VC, Quigley JP, Deryugina EI (2011) Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. Am J Pathol 179(3):1455–1470. doi:10.1016/j.ajpath.2011.05.031

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol 7(4):452–464. doi:10.1215/S1152851705000232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blanco R, Gerhardt H (2013) VEGF and Notch in tip and stalk cell selection. Cold Spring Harb perspect Med 3(1):a006569. doi:10.1101/cshperspect.a006569

    PubMed  Google Scholar 

  • Boardman KC, Swartz MA (2003) Interstitial flow as a guide for lymphangiogenesis. Circ Res 92(7):801–808. doi:10.1161/01.RES.0000065621.69843.49

  • Brooks SA, Lomax-Browne HJ, Carter TM, Kinch CE, Hall DM (2010) Molecular interactions in cancer cell metastasis. Acta Histochem 112(1):3–25. doi:10.1016/j.acthis.2008.11.022

    CAS  PubMed  Google Scholar 

  • Bruyere F, Melen-Lamalle L, Blacher S, Roland G, Thiry M, Moons L, Frankenne F, Carmeliet P, Alitalo K, Libert C, Sleeman JP, Foidart JM, Noel A (2008) Modeling lymphangiogenesis in a three-dimensional culture system. Nat Methods 5(5):431–437. doi:10.1038/nmeth.1205

    CAS  PubMed  Google Scholar 

  • Burton JB, Priceman SJ, Sung JL, Brakenhielm E, An DS, Pytowski B, Alitalo K, Wu L (2008) Suppression of prostate cancer nodal and systemic metastasis by blockade of the lymphangiogenic axis. Cancer Res 68(19):7828–7837. doi:10.1158/0008-5472.CAN-08-1488

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bzowska M, Mezyk-Kopec R, Prochnicki T, Kulesza M, Klaus T, Bereta J (2013) Antibody-based antiangiogenic and antilymphangiogenic therapies to prevent tumor growth and progression. Acta biochimica Polonica 60:263–275

    CAS  PubMed  Google Scholar 

  • Cao Y, Zhong W (2007) Tumor-derived lymphangiogenic factors and lymphatic metastasis. Biomed Pharmacother 61(9):534–539. doi:10.1016/j.biopha.2007.08.009

    CAS  PubMed  Google Scholar 

  • Carr J, Carr I, Dreher B, Betts K (1980) Lymphatic metastasis: invasion of lymphatic vessels and efflux of tumour cells in the afferent popliteal lymph as seen in the Walker rat carcinoma. J Pathol 132(4):287–305. doi:10.1002/path.1711320402

    CAS  PubMed  Google Scholar 

  • Carriere V, Colisson R, Jiguet-Jiglaire C, Bellard E, Bouche G, Al Saati T, Amalric F, Girard JP, M’Rini C (2005) Cancer cells regulate lymphocyte recruitment and leukocyte-endothelium interactions in the tumor-draining lymph node. Cancer Res 65(24):11639–11648. doi:10.1158/0008-5472.CAN-05-1190

    CAS  PubMed  Google Scholar 

  • Chabottaux V, Ricaud S, Host L, Blacher S, Paye A, Thiry M, Garofalakis A, Pestourie C, Gombert K, Bruyere F, Lewandowsky D, Tavitian B, Foidart JM, Duconge F, Noel A (2009) Membrane-type 4 matrix metalloproteinase (MT4-MMP) induces lung metastasis by alteration of primary breast tumour vascular architecture. J Cell Mol Med 13(9B):4002–4013. doi:10.1111/j.1582-4934.2009.00764.x

    PubMed  Google Scholar 

  • Chang YS, di Tomaso E, McDonald DM, Jones R, Jain RK, Munn LL (2000) Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci USA 97(26):14608–14613. doi:10.1073/pnas.97.26.14608

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chaudary N, Milosevic M, Hill RP (2011) Suppression of vascular endothelial growth factor receptor 3 (VEGFR3) and vascular endothelial growth factor C (VEGFC) inhibits hypoxia-induced lymph node metastases in cervix cancer. Gynecol Oncol 123(2):393–400. doi:10.1016/j.ygyno.2011.07.006

    CAS  PubMed  Google Scholar 

  • Chen Z, Varney ML, Backora MW, Cowan K, Solheim JC, Talmadge JE, Singh RK (2005) Down-regulation of vascular endothelial cell growth factor-C expression using small interfering RNA vectors in mammary tumors inhibits tumor lymphangiogenesis and spontaneous metastasis and enhances survival. Cancer Res 65(19):9004–9011. doi:10.1158/0008-5472.CAN-05-0885

    CAS  PubMed  Google Scholar 

  • Christiansen A, Detmar M (2011) Lymphangiogenesis and cancer. Genes Cancer 2(12):1146–1158. doi:10.1177/1947601911423028

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chung MK, Do IG, Jung E, Son YI, Jeong HS, Baek CH (2012) Lymphatic vessels and high endothelial venules are increased in the sentinel lymph nodes of patients with oral squamous cell carcinoma before the arrival of tumor cells. Ann Surg Oncol 19(5):1595–1601. doi:10.1245/s10434-011-2154-9

    PubMed  Google Scholar 

  • Curti BD, Urba WJ, Alvord WG, Janik JE, Smith JW 2nd, Madara K, Longo DL (1993) Interstitial pressure of subcutaneous nodules in melanoma and lymphoma patients: changes during treatment. Cancer Res 53(10 Suppl):2204–2207

    CAS  PubMed  Google Scholar 

  • Dadiani M, Kalchenko V, Yosepovich A, Margalit R, Hassid Y, Degani H, Seger D (2006) Real-time imaging of lymphogenic metastasis in orthotopic human breast cancer. Cancer Res 66(16):8037–8041. doi:10.1158/0008-5472.CAN-06-0728

    CAS  PubMed  Google Scholar 

  • Dadras SS, Lange-Asschenfeldt B, Velasco P, Nguyen L, Vora A, Muzikansky A, Jahnke K, Hauschild A, Hirakawa S, Mihm MC, Detmar M (2005) Tumor lymphangiogenesis predicts melanoma metastasis to sentinel lymph nodes. Mod Pathol 18(9):1232–1242. doi:10.1038/modpathol.3800410

    PubMed  Google Scholar 

  • Dafni H, Israely T, Bhujwalla ZM, Benjamin LE, Neeman M (2002) Overexpression of vascular endothelial growth factor 165 drives peritumor interstitial convection and induces lymphatic drain: magnetic resonance imaging, confocal microscopy, and histological tracking of triple-labeled albumin. Cancer Res 62(22):6731–6739

    CAS  PubMed  Google Scholar 

  • Das S, Sarrou E, Podgrabinska S, Cassella M, Mungamuri SK, Feirt N, Gordon R, Nagi CS, Wang Y, Entenberg D, Condeelis J, Skobe M (2013) Tumor cell entry into the lymph node is controlled by CCL1 chemokine expressed by lymph node lymphatic sinuses. J Exp Med 210(8):1509–1528. doi:10.1084/jem.20111627

    CAS  PubMed Central  PubMed  Google Scholar 

  • David L, Feige JJ, Bailly S (2009) Emerging role of bone morphogenetic proteins in angiogenesis. Cytokine Growth Factor Rev 20(3):203–212. doi:10.1016/j.cytogfr. 2009.05.001

    CAS  PubMed  Google Scholar 

  • Detry B, Erpicum C, Paupert J, Blacher S, Maillard C, Bruyere F, Pendeville H, Remacle T, Lambert V, Balsat C, Ormenese S, Lamaye F, Janssens E, Moons L, Cataldo D, Kridelka F, Carmeliet P, Thiry M, Foidart JM, Struman I, Noel A (2012) Matrix metalloproteinase-2 governs lymphatic vessel formation as an interstitial collagenase. Blood 119(21):5048–5056. doi:10.1182/blood-2011-12-400267

    CAS  PubMed  Google Scholar 

  • Dixon JB (2010) Mechanisms of chylomicron uptake into lacteals. Ann N Y Acad Sci 1207(Suppl 1):E52–E57. doi:10.1111/j.1749-6632.2010.05716.x

    PubMed Central  PubMed  Google Scholar 

  • Dorevic G, Matusan-Ilijas K, Babarovic E, Hadzisejdic I, Grahovac M, Grahovac B, Jonjic N (2009) Hypoxia inducible factor-1alpha correlates with vascular endothelial growth factor A and C indicating worse prognosis in clear cell renal cell carcinoma. J Exp Clin Cancer Res 28:40. doi:10.1186/1756-9966-28-40

    PubMed  Google Scholar 

  • Dua RS, Gui GP, Isacke CM (2005) Endothelial adhesion molecules in breast cancer invasion into the vascular and lymphatic systems. Eur J Surg Oncol 31(8):824–832. doi:10.1016/j.ejso.2005.05.015

    CAS  PubMed  Google Scholar 

  • Eilken HM, Adams RH (2010) Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol 22(5):617–625. doi:10.1016/ j.ceb. 2010.08.010

    CAS  PubMed  Google Scholar 

  • En-Lin S, Wei-Wei Y, Xiao-Liang X, Juan X (2012) Relationship between high density of peritumoral lymphatic vessels and biological behavior of cervical cancer. Int J Gynecol Cancer 22(8):1435–1441. doi:10.1097/IGC.0b013e31826aa702

    PubMed  Google Scholar 

  • Fukumura D, Duda DG, Munn LL, Jain RK (2010) Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models. Microcirculation 17(3):206–225. doi:10.1111/j.1549-8719.2010.00029.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Roman J, Zentella-Dehesa A (2013) Vascular permeability changes involved in tumor metastasis. Cancer Lett 335(2):259–269. doi:10.1016/j.canlet.2013.03.005

    CAS  PubMed  Google Scholar 

  • Garmy-Susini B, Avraamides CJ, Desgrosellier JS, Schmid MC, Foubert P, Ellies LG, Lowy AM, Blair SL, Vandenberg SR, Datnow B, Wang HY, Cheresh DA, Varner J (2013) PI3Kalpha activates integrin alpha4beta1 to establish a metastatic niche in lymph nodes. Proc Natl Acad Sci USA 110(22):9042–9047. doi:10.1073/pnas.1219603110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gerhardt H, Semb H (2008) Pericytes: gatekeepers in tumour cell metastasis? Int J Mol Med 86(2):135–144. doi:10.1007/s00109-007-0258-2

    Google Scholar 

  • Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, Almeida D, Koller A, Hajjar KA, Stainier DY, Chen EI, Lyden D, Bissell MJ (2013) The perivascular niche regulates breast tumour dormancy. Nat Cell Biol 15(7):807–817. doi:10.1038/ncb2767

    CAS  PubMed  Google Scholar 

  • Ghosh K, Thodeti CK, Dudley AC, Mammoto A, Klagsbrun M, Ingber DE (2008) Tumor-derived endothelial cells exhibit aberrant Rho-mediated mechanosensing and abnormal angiogenesis in vitro. Proc Natl Acad Sci USA 105(32):11305–11310. doi:10.1073/pnas.0800835105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gomes FG, Nedel F, Alves AM, Nor JE, Tarquinio SB (2013) Tumor angiogenesis and lymphangiogenesis: tumor/endothelial crosstalk and cellular/microenvironmental signaling mechanisms. Life Sci 92(2):101–107. doi:10.1016/j.lfs.2012.10.008

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gotink KJ, Verheul HM (2010) Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis 13(1):1–14. doi:10.1007/s10456-009-9160-6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Groot Koerkamp B, Rahbari NN, Buchler MW, Koch M, Weitz J (2013) Circulating tumor cells and prognosis of patients with resectable colorectal liver metastases or widespread metastatic colorectal cancer: a meta-analysis. Ann Surg Oncol 20(7):2156–2165. doi:10.1245/s10434-013-2907-8

    PubMed  Google Scholar 

  • Hall K, Ran S (2010) Regulation of tumor angiogenesis by the local environment. Front Biosci 15:195–212

    CAS  Google Scholar 

  • Harrell MI, Iritani BM, Ruddell A (2007) Tumor-induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis. Am J Pathol 170(2):774–786. doi:10.2353/ajpath.2007.060761

    PubMed Central  PubMed  Google Scholar 

  • Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156(4):1363–1380. doi:10.1016/S0002-9440(10)65006-7

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heine A, Held SA, Bringmann A, Holderried TA, Brossart P (2011) Immunomodulatory effects of anti-angiogenic drugs. Leukemia 25(6):899–905. doi:10.1038/leu.2011.24

    CAS  PubMed  Google Scholar 

  • Heldin CH, Rubin K, Pietras K, Ostman A (2004) High interstitial fluid pressure – an obstacle in cancer therapy. Nat Rev Cancer 4(10):806–813. doi:10.1038/nrc1456

    CAS  PubMed  Google Scholar 

  • Herfs M, Hubert P, Kholod N, Caberg JH, Gilles C, Berx G, Savagner P, Boniver J, Delvenne P (2008) Transforming growth factor-beta1-mediated Slug and Snail transcription factor up-regulation reduces the density of Langerhans cells in epithelial metaplasia by affecting E-cadherin expression. Am J Pathol 172(5):1391–1402. doi:10.2353/ajpath.2008.071004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirakawa S, Brown LF, Kodama S, Paavonen K, Alitalo K, Detmar M (2007) VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109(3):1010–1017. doi:10.1182/blood-2006-05-021758

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirakawa S, Detmar M, Kerjaschki D, Nagamatsu S, Matsuo K, Tanemura A, Kamata N, Higashikawa K, Okazaki H, Kameda K, Nishida-Fukuda H, Mori H, Hanakawa Y, Sayama K, Shirakata Y, Tohyama M, Tokumaru S, Katayama I, Hashimoto K (2009) Nodal lymphangiogenesis and metastasis: Role of tumor-induced lymphatic vessel activation in extramammary Paget’s disease. Am J Pathol 175(5):2235–2248. doi:10.2353/ajpath.2009.090420

    PubMed Central  PubMed  Google Scholar 

  • Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M (2005) VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201(7):1089–1099. doi:10.1084/jem.20041896

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hiratsuka S, Goel S, Kamoun WS, Maru Y, Fukumura D, Duda DG, Jain RK (2011) Endothelial focal adhesion kinase mediates cancer cell homing to discrete regions of the lungs via E-selectin up-regulation. Proc Natl Acad Sci USA 108(9):3725–3730. doi:10.1073/pnas.1100446108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13(10):714–726. doi:10.1038/nrc3599

    CAS  PubMed  Google Scholar 

  • Hood JL, San RS, Wickline SA (2011) Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res 71(11):3792–3801. doi:10.1158/0008-5472.CAN-10-4455

    CAS  PubMed  Google Scholar 

  • Hoshida T, Isaka N, Hagendoorn J, di Tomaso E, Chen YL, Pytowski B, Fukumura D, Padera TP, Jain RK (2006) Imaging steps of lymphatic metastasis reveals that vascular endothelial growth factor-C increases metastasis by increasing delivery of cancer cells to lymph nodes: therapeutic implications. Cancer Res 66(16):8065–8075. doi:10.1158/0008-5472.CAN-06-1392

    CAS  PubMed  Google Scholar 

  • Huang Y, Goel S, Duda DG, Fukumura D, Jain RK (2013) Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Cancer Res 73(10):2943–2948. doi:10.1158/0008-5472.CAN-12-4354

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang Y, Song N, Ding Y, Yuan S, Li X, Cai H, Shi H, Luo Y (2009) Pulmonary vascular destabilization in the premetastatic phase facilitates lung metastasis. Cancer Res 69(19):7529–7537. doi:10.1158/0008-5472.CAN-08-4382

    CAS  PubMed  Google Scholar 

  • Hwang TL, Lee LY, Wang CC, Liang Y, Huang SF, Wu CM (2012) CCL7 and CCL21 overexpression in gastric cancer is associated with lymph node metastasis and poor prognosis. World J Gastroenterol 18(11):1249–1256. doi:10.3748/wjg.v18.i11.1249

    CAS  PubMed Central  PubMed  Google Scholar 

  • Isaka N, Padera TP, Hagendoorn J, Fukumura D, Jain RK (2004) Peritumor lymphatics induced by vascular endothelial growth factor-C exhibit abnormal function. Cancer Res 64(13):4400–4404. doi:10.1158/0008-5472.CAN-04-0752

    CAS  PubMed  Google Scholar 

  • Issa A, Le TX, Shoushtari AN, Shields JD, Swartz MA (2009) Vascular endothelial growth factor-C and C-C chemokine receptor 7 in tumor cell-lymphatic cross-talk promote invasive phenotype. Cancer Res 69(1):349–357. doi:10.1158/0008-5472.CAN-08-1875. 69/1/349 [pii]

  • Ji RC (2012) Macrophages are important mediators of either tumor- or inflammation-induced lymphangiogenesis. Cell Mol Life Sci 69(6):897–914. doi:10.1007/s00018-011-0848-6

    CAS  PubMed  Google Scholar 

  • Johannesmeyer D, Smith V, Cole DJ, Esnaola NF, Camp ER (2013) The impact of lymph node disease in extremity soft-tissue sarcomas: a population-based analysis. Am J Surg. doi:10.1016/j.amjsurg.2012.10.043

    PubMed  Google Scholar 

  • Karpanen T, Alitalo K (2008) Molecular biology and pathology of lymphangiogenesis. Annu Rev pathol 3:367–397.doi:10.1146/annurev.pathmechdis.3.121806. 151515

  • Kawai Y, Kaidoh M, Ohhashi T (2008) MDA-MB-231 produces ATP-mediated ICAM-1-dependent facilitation of the attachment of carcinoma cells to human lymphatic endothelial cells. Am J Physiol Cell Physiol 295 (5):C1123–1132. doi:10.1152/ajpcell.00247.2008. 00247.2008 [pii]

  • Kebers F, Lewalle JM, Desreux J, Munaut C, Devy L, Foidart JM, Noel A (1998) Induction of endothelial cell apoptosis by solid tumor cells. Exp Cell Res 240(2):197–205. doi:10.1006/excr.1998.3935

    CAS  PubMed  Google Scholar 

  • Kerjaschki D, Bago-Horvath Z, Rudas M, Sexl V, Schneckenleithner C, Wolbank S, Bartel G, Krieger S, Kalt R, Hantusch B, Keller T, Nagy-Bojarszky K, Huttary N, Raab I, Lackner K, Krautgasser K, Schachner H, Kaserer K, Rezar S, Madlener S, Vonach C, Davidovits A, Nosaka H, Hammerle M, Viola K, Dolznig H, Schreiber M, Nader A, Mikulits W, Gnant M, Hirakawa S, Detmar M, Alitalo K, Nijman S, Offner F, Maier TJ, Steinhilber D, Krupitza G (2011) Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph node metastasis of human mammary carcinoma xenografts in mouse. J Clin Invest 121(5):2000–2012. doi:10.1172/JCI44751

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J, Winkler F (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16(1):116–122. doi:10.1038/nm.2072

    CAS  PubMed  Google Scholar 

  • Koch S, Tugues S, Li X, Gualandi L, Claesson-Welsh L (2011) Signal transduction by vascular endothelial growth factor receptors. Biochem J 437(2):169–183. doi:10.1042/BJ20110301

    CAS  PubMed  Google Scholar 

  • Koh YW, Park C, Yoon DH, Suh C, Huh J (2013) Prognostic significance of COX-2 expression and correlation with Bcl-2 and VEGF expression, microvessel density, and clinical variables in classical Hodgkin lymphoma. Am J Surg Pathol 37(8):1242–1251. doi:10.1097/PAS.0b013e31828b6ad3

    PubMed  Google Scholar 

  • Konstantopoulos K, Thomas SN (2009) Cancer cells in transit: the vascular interactions of tumor cells. Annu Rev Biomed Eng 11:177–202. doi:10.1146/annurev-bioeng-061008-124949

    CAS  PubMed  Google Scholar 

  • Labelle M, Hynes RO (2012) The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discov 2(12):1091–1099. doi:10.1158/2159-8290.CD-12-0329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lazennec G, Richmond A (2010) Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol Med 16(3):133–144. doi:10.1016/j.molmed.2010.01.003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SY, Chao-Nan Q, Seng OA, Peiyi C, Bernice WH, Swe MS, Chii WJ, Jacqueline HS, Chee SK (2012) Changes in specialized blood vessels in lymph nodes and their role in cancer metastasis. J Transl Med 10:206. doi:10.1186/1479-5876-10-206

    PubMed Central  PubMed  Google Scholar 

  • Lee TH, Avraham HK, Jiang S, Avraham S (2003) Vascular endothelial growth factor modulates the transendothelial migration of MDA-MB-231 breast cancer cells through regulation of brain microvascular endothelial cell permeability. J Biol Chem 278(7):5277–5284. doi:10.1074/jbc.M210063200

    CAS  PubMed  Google Scholar 

  • Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906. doi:10.1016/j.cell.2009.10.027

    CAS  PubMed Central  PubMed  Google Scholar 

  • Levet S, Ciais D, Merdzhanova G, Mallet C, Zimmers TA, Lee SJ, Navarro FP, Texier I, Feige JJ, Bailly S, Vittet D (2013) Bone morphogenetic protein 9 (BMP9) controls lymphatic vessel maturation and valve formation. Blood 122(4):598–607. doi:10.1182/blood-2012-12-472142

    CAS  PubMed  Google Scholar 

  • Li CY, Shan S, Huang Q, Braun RD, Lanzen J, Hu K, Lin P, Dewhirst MW (2000) Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models. J Natl Cancer Inst 92(2):143–147

    CAS  PubMed  Google Scholar 

  • Liu X, Wu H, Byrne M, Jeffrey J, Krane S, Jaenisch R (1995) A targeted mutation at the known collagenase cleavage site in mouse type I collagen impairs tissue remodeling. J Cell Biol 130(1):227–237

    CAS  PubMed  Google Scholar 

  • Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196(4):395–406. doi:10.1083/jcb.201102147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lund AW, Duraes FV, Hirosue S, Raghavan VR, Nembrini C, Thomas SN, Issa A, Hugues S, Swartz MA (2012) VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep 1(3):191–199. doi:10.1016/j.celrep.2012.01.005

    CAS  PubMed  Google Scholar 

  • Lund AW, Swartz MA (2010) Role of lymphatic vessels in tumor immunity: passive conduits or active participants? J Mammary Gland Biol Neoplasia 15(3):341–352. doi:10.1007/s10911-010-9193-x

    PubMed  Google Scholar 

  • Ma J, Chen CS, Blute T, Waxman DJ (2011) Antiangiogenesis enhances intratumoral drug retention. Cancer Res 71(7):2675–2685. doi:10.1158/0008-5472.CAN-10-3242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marino D, Angehrn Y, Klein S, Riccardi S, Baenziger-Tobler N, Otto VI, Pittelkow M, Detmar M (2013) Activation of the epidermal growth factor receptor promotes lymphangiogenesis in the skin. J Dermatol Sci 71(3):184–194. doi:10.1016/j.jdermsci.2013.04.024

    CAS  PubMed  Google Scholar 

  • Martins SF, Garcia EA, Luz MA, Pardal F, Rodrigues M, Filho AL (2013) Clinicopathological correlation and prognostic significance of VEGF-A, VEGF-C, VEGFR-2 and VEGFR-3 expression in colorectal cancer. Cancer Genomics Proteomic 10(2):55–67

    CAS  Google Scholar 

  • Miteva DO, Rutkowski JM, Dixon JB, Kilarski W, Shields JD, Swartz MA (2010) Transmural flow modulates cell and fluid transport functions of lymphatic endothelium. Circ Res 106(5):920–931. doi:10.1161/CIRCRESAHA.109.207274

    CAS  PubMed  Google Scholar 

  • Munn DH, Mellor AL (2006) The tumor-draining lymph node as an immune-privileged site. Immunol Rev 213:146–158. doi:10.1111/j.1600-065X.2006.00444.x

    PubMed  Google Scholar 

  • Nathan SS, Huvos AG, Casas-Ganem JE, Yang R, Linkov I, Sowers R, DiResta GR, Gorlick R, Healey JH (2008) Tumor interstitial fluid pressure may regulate angiogenic factors in osteosarcoma. J Orthop Res 26(11):1520–1525. doi:10.1002/jor.20633

    PubMed  Google Scholar 

  • Nathanson SD, Mahan M (2011) Sentinel lymph node pressure in breast cancer. Ann Surg Oncol 18(13):3791–3796. doi:10.1245/s10434-011-1796-y

    PubMed  Google Scholar 

  • Niessen K, Zhang G, Ridgway JB, Chen H, Kolumam G, Siebel CW, Yan M (2011) The Notch1-Dll4 signaling pathway regulates mouse postnatal lymphatic development. Blood 118(7):1989–1997. doi:10.1182/blood-2010-11-319129

    CAS  PubMed  Google Scholar 

  • Noel A, Jost M, Maquoi E (2008) Matrix metalloproteinases at cancer tumor-host interface. Semin Cell Dev Biol 19(1):52–60. doi:10.1016/j.semcdb.2007.05.011

    CAS  PubMed  Google Scholar 

  • Norrmen C, Tammela T, Petrova TV, Alitalo K (2011) Biological basis of therapeutic lymphangiogenesis. Circulation 123(12):1335–1351. doi:10.1161/CIRCULATIONAHA.107.704098. 123/12/1335[pii]

  • Padera TP, Stoll BR, Tooredman JB, Capen D, di Tomaso E, Jain RK (2004) Pathology: cancer cells compress intratumour vessels. Nature 427(6976):695. doi:10.1038/427695a

    CAS  PubMed  Google Scholar 

  • Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, Inoue M, Bergers G, Hanahan D, Casanovas O (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15(3):220–231. doi:10.1016/j.ccr.2009.01.027

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palazon A, Aragones J, Morales-Kastresana A, de Landazuri MO, Melero I (2012) Molecular pathways: hypoxia response in immune cells fighting or promoting cancer. Clin Cancer Res 18(5):1207–1213. doi:10.1158/1078-0432.CCR-11-1591

    CAS  PubMed  Google Scholar 

  • Papetti M, Herman IM (2002) Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol 282(5):C947–C970. doi:10.1152/ajpcell.00389.2001

    CAS  PubMed  Google Scholar 

  • Paupert J, Sounni NE, Noel A (2011) Lymphangiogenesis in post-natal tissue remodeling: lymphatic endothelial cell connection with its environment. Mol Aspects Med 32(2):146–158. doi:10.1016/j.mam.2011.04.002

    CAS  PubMed  Google Scholar 

  • Payne SJ, Jones L (2011) Influence of the tumor microenvironment on angiogenesis. Future Oncol 7(3):395–408. doi:10.2217/fon.11.13

    CAS  PubMed  Google Scholar 

  • Perentes JY, Kirkpatrick ND, Nagano S, Smith EY, Shaver CM, Sgroi D, Garkavtsev I, Munn LL, Jain RK, Boucher Y (2011) Cancer cell-associated MT1-MMP promotes blood vessel invasion and distant metastasis in triple-negative mammary tumors. Cancer Res 71(13):4527–4538. doi:10.1158/0008-5472.CAN-10-4376

    CAS  PubMed  Google Scholar 

  • Podgrabinska S, Kamalu O, Mayer L, Shimaoka M, Snoeck H, Randolph GJ, Skobe M (2009) Inflamed lymphatic endothelium suppresses dendritic cell maturation and function via Mac-1/ICAM-1-dependent mechanism. J Immunol 183(3):1767–1779. doi:10.4049/jimmunol.0802167

    CAS  PubMed  Google Scholar 

  • Proulx ST, Luciani P, Christiansen A, Karaman S, Blum KS, Rinderknecht M, Leroux JC, Detmar M (2013) Use of a PEG-conjugated bright near-infrared dye for functional imaging of rerouting of tumor lymphatic drainage after sentinel lymph node metastasis. Biomaterials 34(21):5128–5137. doi:10.1016/j.biomaterials.2013.03.034

    CAS  PubMed  Google Scholar 

  • Proulx ST, Luciani P, Derzsi S, Rinderknecht M, Mumprecht V, Leroux JC, Detmar M (2010) Quantitative imaging of lymphatic function with liposomal indocyanine green. Cancer Res 70(18):7053–7062. doi:10.1158/0008-5472.CAN-10-0271

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qian CN, Berghuis B, Tsarfaty G, Bruch M, Kort EJ, Ditlev J, Tsarfaty I, Hudson E, Jackson DG, Petillo D, Chen J, Resau JH, Teh BT (2006) Preparing the “soil”: the primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res 66(21):10365–10376. doi:10.1158/0008-5472.CAN-06-2977

    CAS  PubMed  Google Scholar 

  • Raju B, Haug SR, Ibrahim SO, Heyeraas KJ (2008) High interstitial fluid pressure in rat tongue cancer is related to increased lymph vessel area, tumor size, invasiveness and decreased body weight. J Oral Pathol Med 37(3):137–144. doi:10.1111/j.1600-0714.2007.00602.x

    PubMed  Google Scholar 

  • Raut CP, Boucher Y, Duda DG, Morgan JA, Quek R, Ancukiewicz M, Lahdenranta J, Eder JP, Demetri GD, Jain RK (2012) Effects of sorafenib on intra-tumoral interstitial fluid pressure and circulating biomarkers in patients with refractory sarcomas (NCI protocol 6948). PloS One 7(2):e26331. doi:10.1371/journal.pone.0026331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Razmkhah M, Jaberipour M, Safaei A, Talei AR, Erfani N, Ghaderi A (2012) Chemokine and chemokine receptors: a comparative study between metastatic and nonmetastatic lymph nodes in breast cancer patients. Eur Cytokine Netw 23(3):72–77. doi:10.1684/ecn.2012.0310

    CAS  PubMed  Google Scholar 

  • Ren J, Jin W, Gao YE, Xia L, Zhang Y, Li W, Zhang X, Zhao D, Li Z, Ma H, Wang J, Liu R, Chen Y, Qian J, Shi X, Liu Y (2014) Relations between GPR4 Expression, microvascular density (MVD) and clinical pathological characteristics of patients with Epithelial Ovarian Carcinoma (EOC). Curr Pharm Des 20(11):1904–1916

    Google Scholar 

  • Ribatti D, Crivellato E (2009) Immune cells and angiogenesis. J Cell Mol Med 13(9A):2822–2833. doi:10.1111/j.1582-4934.2009.00810.x

    CAS  PubMed  Google Scholar 

  • Robinson BD, Sica GL, Liu YF, Rohan TE, Gertler FB, Condeelis JS, Jones JG (2009) Tumor microenvironment of metastasis in human breast carcinoma: a potential prognostic marker linked to hematogenous dissemination. Clin Cancer Res 15(7):2433–2441. doi:10.1158/1078-0432.CCR-08-2179

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saharinen P, Eklund L, Pulkki K, Bono P, Alitalo K (2011) VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol Med 17(7):347–362. doi:10.1016/j.molmed.2011.01.015

    CAS  PubMed  Google Scholar 

  • Sato M, Nakai Y, Nakata W, Yoshida T, Hatano K, Kawashima A, Fujita K, Uemura M, Takayama H, Nonomura N (2013) Microvessel area of immature vessels is a prognostic factor in renal cell carcinoma. Int J Urol. doi:10.1111/iju.12231

    Google Scholar 

  • Schoppmann SF, Fenzl A, Schindl M, Bachleitner-Hofmann T, Nagy K, Gnant M, Horvat R, Jakesz R, Birner P (2006) Hypoxia inducible factor-1alpha correlates with VEGF-C expression and lymphangiogenesis in breast cancer. Breast Cancer Res Treat 99(2):135–141. doi:10.1007/s10549-006-9190-3

    CAS  PubMed  Google Scholar 

  • Semenza GL (2012) Cancer-stromal cell interactions mediated by hypoxia-inducible factors promote angiogenesis, lymphangiogenesis, and metastasis. Oncogene. doi:10.1038/onc.2012.578

    PubMed Central  Google Scholar 

  • Sharma A, Jain N, Sareen R (2013) Nanocarriers for diagnosis and targeting of breast cancer. BioMed Res Int 2013:960821. doi:10.1155/2013/960821

    PubMed Central  PubMed  Google Scholar 

  • Shawber CJ, Funahashi Y, Francisco E, Vorontchikhina M, Kitamura Y, Stowell SA, Borisenko V, Feirt N, Podgrabinska S, Shiraishi K, Chawengsaksophak K, Rossant J, Accili D, Skobe M, Kitajewski J (2007) Notch alters VEGF responsiveness in human and murine endothelial cells by direct regulation of VEGFR-3 expression. J Clin Invest 117(11):3369–3382. doi:10.1172/JCI24311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shayan R, Karnezis T, Murali R, Wilmott JS, Ashton MW, Taylor GI, Thompson JF, Hersey P, Achen MG, Scolyer RA, Stacker SA (2012) Lymphatic vessel density in primary melanomas predicts sentinel lymph node status and risk of metastasis. Histopathology 61(4):702–710. doi:10.1111/j.1365-2559.2012.04310.x

    PubMed  Google Scholar 

  • Shibata MA, Morimoto J, Shibata E, Otsuki Y (2008) Combination therapy with short interfering RNA vectors against VEGF-C and VEGF-A suppresses lymph node and lung metastasis in a mouse immunocompetent mammary cancer model. Cancer Gene Ther 15(12):776–786. doi:10.1038/cgt.2008.43

    CAS  PubMed  Google Scholar 

  • Shieh AC (2011) Biomechanical forces shape the tumor microenvironment. Ann Biomed Eng 39(5):1379–1389. doi:10.1007/s10439-011-0252-2

    PubMed  Google Scholar 

  • Shieh AC, Swartz MA (2011) Regulation of tumor invasion by interstitial fluid flow. Phys Biol 8(1):015012. doi:10.1088/1478-3975/8/1/015012

    PubMed  Google Scholar 

  • Shields JD, Fleury ME, Yong C, Tomei AA, Randolph GJ, Swartz MA (2007) Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 11(6):526–538. doi:10.1016/j.ccr.2007.04.020. S1535-6108(07)00145-6 [pii]

  • Shields JD, Kourtis IC, Tomei AA, Roberts JM, Swartz MA (2010) Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 328(5979):749–752. doi:10.1126/science.1185837

    CAS  PubMed  Google Scholar 

  • Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG, Rimoldi M, Biswas SK, Allavena P, Mantovani A (2008) Macrophage polarization in tumour progression. Semin Cancer Biol 18(5):349–355. doi:10.1016/j.semcancer.2008.03.004

    CAS  PubMed  Google Scholar 

  • Sleeman JP, Cady B, Pantel K (2012) The connectivity of lymphogenous and hematogenous tumor cell dissemination: biological insights and clinical implications. Clin Exp Metastasis 29(7):737–746. doi:10.1007/s10585-012-9489-x

    PubMed  Google Scholar 

  • Song JW, Daubriac J, Tse JM, Bazou D, Munn LL (2012) RhoA mediates flow-induced endothelial sprouting in a 3-D tissue analogue of angiogenesis. Lab Chip 12(23):5000–5006. doi:10.1039/c2lc40389g

    CAS  PubMed  Google Scholar 

  • Song JW, Munn LL (2011) Fluid forces control endothelial sprouting. Proc Natl Acad Sci USA 108(37):15342–15347. doi:10.1073/pnas.1105316108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sounni NE, Dehne K, van Kempen L, Egeblad M, Affara NI, Cuevas I, Wiesen J, Junankar S, Korets L, Lee J, Shen J, Morrison CJ, Overall CM, Krane SM, Werb Z, Boudreau N, Coussens LM (2010) Stromal regulation of vessel stability by MMP14 and TGFbeta. Dis Model Mech 3(5–6):317–332. doi:10.1242/dmm.003863

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sounni NE, Noel A (2013) Targeting the tumor microenvironment for cancer therapy. Clin Chem 59(1):85–93. doi:10.1373/clinchem.2012.185363

    CAS  PubMed  Google Scholar 

  • Sounni NE, Paye A, Host L, Noel A (2011) MT-MMPS as regulators of vessel stability associated with angiogenesis. Front Pharmacol 2:111. doi:10.3389/fphar.2011.00111

    PubMed Central  PubMed  Google Scholar 

  • Stylianopoulos T, Martin JD, Chauhan VP, Jain SR, Diop-Frimpong B, Bardeesy N, Smith BL, Ferrone CR, Hornicek FJ, Boucher Y, Munn LL, Jain RK (2012) Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc Natl Acad Sci USA 109(38):15101–15108. doi:10.1073/pnas.1213353109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun YL, Liu WD, Ma GY, Gao DW, Jiang YZ, Liu Q, Du JJ (2013) Expression of HGF and Met in human tissues of colorectal cancers: biological and clinical implications for synchronous liver metastasis. Int J Med Sci 10(5):548–559. doi:10.7150/ijms.5191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Swartz MA, Lund AW (2012) Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat Rev Cancer 12(3):210–219. doi:10.1038/nrc3186

    CAS  PubMed  Google Scholar 

  • Tammela T, Saaristo A, Holopainen T, Yla-Herttuala S, Andersson LC, Virolainen S, Immonen I, Alitalo K (2011) Photodynamic ablation of lymphatic vessels and intralymphatic cancer cells prevents metastasis. Science translational medicine 3(69):69ra11. doi:10.1126/scitranslmed.3001699

  • Tartour E, Pere H, Maillere B, Terme M, Merillon N, Taieb J, Sandoval F, Quintin-Colonna F, Lacerda K, Karadimou A, Badoual C, Tedgui A, Fridman WH, Oudard S (2011) Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev 30(1):83–95. doi:10.1007/s10555-011-9281-4

    CAS  PubMed  Google Scholar 

  • Tomei AA, Siegert S, Britschgi MR, Luther SA, Swartz MA (2009) Fluid flow regulates stromal cell organization and CCL21 expression in a tissue-engineered lymph node microenvironment. J Immunol 183(7):4273–4283. doi:10.4049/jimmunol.0900835

    CAS  PubMed  Google Scholar 

  • Van den Eynden GG, Vandenberghe MK, van Dam PJ, Colpaert CG, van Dam P, Dirix LY, Vermeulen PB, Van Marck EA (2007) Increased sentinel lymph node lymphangiogenesis is associated with nonsentinel axillary lymph node involvement in breast cancer patients with a positive sentinel node. Clin Cancer Res 13(18 Pt 1):5391–5397. doi:10.1158/1078-0432.CCR-07-1230

    PubMed  Google Scholar 

  • Vickerman V, Kamm RD (2012) Mechanism of a flow-gated angiogenesis switch: early signaling events at cell-matrix and cell-cell junctions. Integr Biol (Camb) 4(8):863–874. doi:10.1039/c2ib00184e

    CAS  Google Scholar 

  • Viola K, Kopf S, Huttary N, Vonach C, Kretschy N, Teichmann M, Giessrigl B, Raab I, Stary S, Krieger S, Keller T, Bauer S, Hantusch B, Szekeres T, de Martin R, Jager W, Mikulits W, Dolznig H, Krupitza G, Grusch M (2013) Bay11-7082 inhibits the disintegration of the lymphendothelial barrier triggered by MCF-7 breast cancer spheroids; the role of ICAM-1 and adhesion. Br J Cancer 108(3):564–569. doi:10.1038/bjc.2012.485

    CAS  PubMed Central  PubMed  Google Scholar 

  • von Bulow C, Hayen W, Hartmann A, Mueller-Klieser W, Allolio B, Nehls V (2001) Endothelial capillaries chemotactically attract tumour cells. J Pathol 193(3):367–376. doi:10.1002/1096-9896(2000)9999:9999<::AID-PATH810>3.0.CO;2-1

  • Wang J, Guo Y, Wang B, Bi J, Li K, Liang X, Chu H, Jiang H (2012) Lymphatic microvessel density and vascular endothelial growth factor-C and -D as prognostic factors in breast cancer: a systematic review and meta-analysis of the literature. Mol Biol Rep 39(12):11153–11165. doi:10.1007/s11033-012-2024-y

    CAS  PubMed  Google Scholar 

  • Wang W, Wyckoff JB, Frohlich VC, Oleynikov Y, Huttelmaier S, Zavadil J, Cermak L, Bottinger EP, Singer RH, White JG, Segall JE, Condeelis JS (2002) Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res 62(21):6278–6288

    CAS  PubMed  Google Scholar 

  • Weis S, Cui J, Barnes L, Cheresh D (2004) Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J Cell Biol 167(2):223–229. doi:10.1083/jcb.200408130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nature Med 17(11):1359–1370. doi:10.1038/nm.2537

    CAS  PubMed  Google Scholar 

  • Wendel C, Hemping-Bovenkerk A, Krasnyanska J, Mees ST, Kochetkova M, Stoeppeler S, Haier J (2012) CXCR4/CXCL12 participate in extravasation of metastasizing breast cancer cells within the liver in a rat model. PloS One 7(1):e30046. doi:10.1371/journal.pone.0030046

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wiig H, Keskin D, Kalluri R (2010) Interaction between the extracellular matrix and lymphatics: consequences for lymphangiogenesis and lymphatic function. Matrix Biol 29(8):645–656. doi:10.1016/j.matbio.2010.08.001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, Chung DC, Sahani DV, Kalva SP, Kozin SV, Mino M, Cohen KS, Scadden DT, Hartford AC, Fischman AJ, Clark JW, Ryan DP, Zhu AX, Blaszkowsky LS, Chen HX, Shellito PC, Lauwers GY, Jain RK (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10(2):145–147. doi:10.1038/nm988

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wong SY, Haack H, Crowley D, Barry M, Bronson RT, Hynes RO (2005) Tumor-secreted vascular endothelial growth factor-C is necessary for prostate cancer lymphangiogenesis, but lymphangiogenesis is unnecessary for lymph node metastasis. Cancer Res 65(21):9789–9798. doi:10.1158/0008-5472.CAN-05-0901

    CAS  PubMed  Google Scholar 

  • Wong SY, Hynes RO (2006) Lymphatic or hematogenous dissemination: how does a metastatic tumor cell decide? Cell Cycle 5(8):812–817

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, Graf T, Pollard JW, Segall J, Condeelis J (2004) A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 64(19):7022–7029. doi:10.1158/0008-5472.CAN-04-1449

    CAS  PubMed  Google Scholar 

  • Wyckoff JB, Jones JG, Condeelis JS, Segall JE (2000) A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res 60(9):2504–2511

    CAS  PubMed  Google Scholar 

  • Wyckoff JB, Wang Y, Lin EY, Li JF, Goswami S, Stanley ER, Segall JE, Pollard JW, Condeelis J (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67(6):2649–2656. doi:10.1158/0008-5472.CAN-06-1823

    CAS  PubMed  Google Scholar 

  • Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD (2012) Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci USA 109(34):13515–13520. doi:10.1073/pnas.1210182109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang L, Wu G, Pantel K (2011) Detection of circulating tumor cells by RT-PCR significantly associated with poor prognosis in breast cancer. Breast Cancer Res Treat 130(1):359–364. doi:10.1007/s10549-011-1636-6

    PubMed  Google Scholar 

  • Zhao BC, Wang ZJ, Mao WZ, Ma HC, Han JG, Zhao B, Xu HM (2011) CXCR4/SDF-1 axis is involved in lymph node metastasis of gastric carcinoma. World J Gastroenterol 17(19):2389–2396. doi:10.3748/wjg.v17.i19.2389

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng H, Qian J, Carbone CJ, Leu NA, Baker DP, Fuchs SY (2011) Vascular endothelial growth factor-induced elimination of the type 1 interferon receptor is required for efficient angiogenesis. Blood 118(14):4003–4006. doi:10.1182/blood-2011-06-359745

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou Q, Guo P, Gallo JM (2008) Impact of angiogenesis inhibition by sunitinib on tumor distribution of temozolomide. Clin Cancer Res 14(5):1540–1549. doi:10.1158/1078-0432.CCR-07-454410.1158/1078-0432.CCR-07-4544

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnès Noël .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag France

About this chapter

Cite this chapter

Paupert, J., Van De Velde, M., Kridelka, F., Noël, A. (2014). Tumor Angiogenesis and Lymphangiogenesis: Microenvironmental Soil for Tumor Progression and Metastatic Dissemination. In: Feige, JJ., Pagès, G., Soncin, F. (eds) Molecular Mechanisms of Angiogenesis. Springer, Paris. https://doi.org/10.1007/978-2-8178-0466-8_13

Download citation

Publish with us

Policies and ethics