Skip to main content

Emergence of Endothelial Cells During Vascular Development

  • Chapter
  • First Online:
Molecular Mechanisms of Angiogenesis
  • 1355 Accesses

Abstract

Arteries, capillaries, and veins form the vascular system that supplies oxygen and nutrients to all tissues and removes waste products. In the embryo the vascular system is the first system to emerge during vasculogenesis, and the factors that initiate the patterning of the endothelial network are, for the most part, involved in the adult angiogenesis. Dysfunctions of the vascular system cause numerous pathologies, including artherosclerosis, cancer, and ocular diseases. Understanding how endothelial cells differentiate and deciphering the cellular, molecular, and physical clues that drive blood vessel formation in the embryo may therefore provide means to develop therapies against vascular diseases in the adult. In this review, we present recent findings that identify new candidates controlling vascular system development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam MG, Berger C, Feldner A, Yang WJ, Wüstehube-Lausch J, Herberich SE, Pinder M, Gesierich S, Hammes HP, Augustin HG, Fischer A (2013) Synaptojanin-2 binding protein stabilizes the Notch ligands DLL1 and DLL4 and inhibits sprouting angiogenesis. Circ Res 113(11):1206–1218

    Article  CAS  PubMed  Google Scholar 

  • Adamo L, Naveiras O, Wenzel PL, McKinney-Freeman S, Mack PJ, Gracia-Sancho J, Suchy-Dicey A, Yoshimoto M, Lensch MW, Yoder MC, García-Cardeña G, Daley GQ (2009) Biomechanical forces promote embryonic haematopoiesis. Nature 459(7250):1131–1135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Adams RH, Eichmann A (2010) Axon guidance molecules in vascular patterning. Cold Spring Harb Perspect Biol 2(5):a001875

    Article  PubMed Central  PubMed  Google Scholar 

  • Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, Risau W, Klein R (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13(3):295–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alitalo A, Detmar M (2012) Interaction of tumor cells and lymphatic vessels in cancer progression. Oncogene 31(42):4499–4508

    Article  CAS  PubMed  Google Scholar 

  • Bates D, Taylor GI, Newgreen DF (2002) The pattern of neurovascular development in the forelimb of the quail embryo. Dev Biol 249(2):300–320

    Article  CAS  PubMed  Google Scholar 

  • Bates D, Taylor GI, Minichiello J, Farlie P, Cichowitz A, Watson N, Klagsbrun M, Mamluk R, Newgreen DF (2003) Neurovascular congruence results from a shared patterning mechanism that utilizes Semaphorin3A and Neuropilin-1. Dev Biol 255(1):77–98

    Article  CAS  PubMed  Google Scholar 

  • Bentley MT, Poole TJ (2009) Neurovascular anatomy of the embryonic quail hindlimb. Anat Rec 292(10):1559–1568

    Article  Google Scholar 

  • Buschmann I, Pries A, Styp-Rekowska B, Hillmeister P, Loufrani L, Henrion D, Shi Y, Duelsner A, Hoefer I, Gatzke N, Wang H, Lehmann K, Ulm L, Ritter Z, Hauff P, Hlushchuk R, Djonov V, van Veen T, le Noble F (2010) Pulsatile shear and Gja5 modulate arterial identity and remodeling events during flow-driven arteriogenesis. Development 137(13):2187–2196

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439

    Article  CAS  PubMed  Google Scholar 

  • Chapman WB (1918) The effect of the heart-beat upon the development of the vascular system in the chick. Am J Anat 23:175–203

    Article  Google Scholar 

  • Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA (2009) Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457:887–891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G (1998) A common precursor for hematopoietic and endothelial cells. Development 125(4):725–732

    CAS  PubMed  Google Scholar 

  • Chung AS, Ferrara N (2011) Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol 27:563–584

    Article  CAS  PubMed  Google Scholar 

  • Corada M, Nyqvist D, Orsenigo F, Caprini A, Giampietro C, Taketo MM, Iruela-Arispe ML, Adams RH, Dejana E (2010) The Wnt/beta-catenin pathway modulates vascular remodeling and specification by upregulating Dll4/Notch signaling. Dev Cell 18(6):938–949

    Article  CAS  PubMed  Google Scholar 

  • Coultas L, Chawengsaksophak K, Rossant J (2005) Endothelial cells and VEGF in vascular development. Nature 438(7070):937–945

    Article  CAS  PubMed  Google Scholar 

  • Cristofaro B, Shi Y, Faria M, Suchting S, Leroyer AS, Trindade A, Duarte A, Zovein AC, Iruela-Arispe ML, Nih LR, Kubis N, Henrion D, Loufrani L, Todiras M, Schleifenbaum J, Gollasch M, Zhuang ZW, Simons M, Eichmann A, le Noble F (2013) Dll4-Notch signaling determines the formation of native arterial collateral networks and arterial function in mouse ischemia models. Development 140(8):1720–1729

    Article  CAS  PubMed  Google Scholar 

  • Cui C, Filla MB, Jones EA, Lansford R, Cheuvront T, Al-Roubaie S, Rongish BJ, Little CD (2013) Embryogenesis of the first circulating endothelial cells. PLoS One 8(5):e60841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davis GE, Kim DJ, Meng CX, Norden PR, Speichinger KR, Davis MT, Smith AO, Bowers SL, Stratman AN (2013) Control of vascular tube morphogenesis and maturation in 3D extracellular matrices by endothelial cells and pericytes. Methods Mol Biol 1066:17–28

    Article  PubMed  Google Scholar 

  • De Spiegelaere W, Casteleyn C, Van den Broeck W, Plendl J, Bahramsoltani M, Simoens P, Djonov V, Cornillie P (2012) Intussusceptive angiogenesis: a biologically relevant form of angiogenesis. J Vasc Res 49(5):390–404

    Article  PubMed  Google Scholar 

  • del Toro R, Prahst C, Mathivet T, Siegfried G, Kaminker JS, Larrivée B, Bréant C, Duarte A, Takakura N, Fukamizu A, Penninger J, Eichmann A (2010) Identification and functional analysis of endothelial tip cell-enriched genes. Blood 116(19):4025–4033

    Article  PubMed  Google Scholar 

  • De Val S, Chi NC, Meadows SM, Minovitsky S, Anderson JP, Harris IS, Ehlers ML, Agarval P, Visel A, Xu SM, Pennacchio LA, Dubchak I, Krieg PA, Stainier DY, Black BL (2008) Combinatorial regulation of endothelial gene expression by ets and forkhead transcription factors. Cell 135(6):1053–1064

    Google Scholar 

  • D’Souza SL, Elefanty AG, Keller G (2005) SCL/Tal-1 is essential for hematopoietic commitment of the hemangioblast but not for its development. Blood 105(10):3862–3870

    Article  PubMed Central  PubMed  Google Scholar 

  • Duarte A, Hirashima M, Benedito R, Trindade A, Diniz P, Bekman E, Costa L, Henrique D, Rossant J (2004) Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev 18(20):2474–2478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eichmann A, Simons M (2012) VEGF signaling inside vascular endothelial cells and beyond. Curr Opin Cell Biol 24(2):188–193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eichmann A, Thomas JL (2013) Molecular parallels between neural and vascular development. Cold Spring Harb Perspect Med 3(1):a006551

    Article  PubMed  Google Scholar 

  • Eichmann A, Corbel C, Nataf V, Vaigot P, Bréant C, Le Douarin NM (1997) Ligand-dependent development of the endothelial and hemopoietic lineages from embryonic mesodermal cells expressing vascular endothelial growth factor receptor 2. Proc Natl Acad Sci U S A 94(10):5141–5146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eilken HM, Nishikawa S-I, Schroeder T (2009) Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature 457:896–900

    Article  CAS  PubMed  Google Scholar 

  • Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S, Peri F, Wilson SW, Ruhrberg C (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116(5):829–840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fehling HJ, Lacaud G, Kubo A, Kennedy M, Robertson S, Keller G, Kouskoff V (2003) Tracking mesoderm induction and its specification to the hemangioblast during embryonic stem cell differentiation. Development 130(17):4217–4227

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380(6573):439–442

    Article  CAS  PubMed  Google Scholar 

  • Fischer A, Schumacher N, Maier M, Sendtner M, Gessler M (2004) The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev 18(8):901–911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gale NW, Dominguez MG, Noguera I, Pan L, Hughes V, Valenzuela DM, Murphy AJ, Adams NC, Lin HC, Holash J, Thurston G, Yancopoulos GD (2004) Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci U S A 101(45):15949–15954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gerety SS, Wang HU, Chen ZF, Anderson DJ (1999) Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell 4(3):403–414

    Article  CAS  PubMed  Google Scholar 

  • Gore AV, Swift MR, Cha YR, Lo B, McKinney MC, Li W, Castranova D, Davis A, Mukouyama YS, Weinstein BM (2011) Rspo1/Wnt signaling promotes angiogenesis via Vegfc/Vegfr3. Development 138(22):4875–4886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Jung S, Chimenti S, Landsman L, Abramovitch R, Keshet E (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124(1):175–189

    Article  CAS  PubMed  Google Scholar 

  • Gu C, Rodriguez ER, Reimert DV, Shu T, Fritzsch B, Richards LJ, Kolodkin AL, Ginty DD (2003) Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev Cell 5(1):45–57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Herzog Y, Kalcheim C, Kahane N, Reshef R, Neufeld G (2001) Differential expression of neuropilin-1 and neuropilin-2 in arteries and veins. Mech Dev 109(1):115–119

    Article  CAS  PubMed  Google Scholar 

  • Herzog Y, Guttmann-Raviv N, Neufeld G (2005) Segregation of arterial and venous markers in subpopulations of blood islands before vessel formation. Dev Dyn 232(4):1047–1055

    Article  CAS  PubMed  Google Scholar 

  • Huber TL, Kouskoff V, Fehling HJ, Palis J, Keller G (2004) Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 432(7017):625–630

    Article  CAS  PubMed  Google Scholar 

  • Isogai S, Lawson ND, Torrealday S, Horiguchi M, Weinstein BM (2003) Angiogenic network formation in the developing vertebrate trunk. Development 130(21):5281–5290

    Article  CAS  PubMed  Google Scholar 

  • Kamei M, Saunders WB, Bayless KJ, Dye L, Davis GE, Weinstein BM (2006) Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442(7101):453–456

    Article  CAS  PubMed  Google Scholar 

  • Klein R (2012) Eph/ephrin signalling during development. Development 139(22):4105–4109

    Article  CAS  PubMed  Google Scholar 

  • Koch AW, Mathivet T, Larrivée B, Tong RK, Kowalski J, Pibouin-Fragner L, Bouvrée K, Stawicki S, Nicholes K, Rathore N, Scales SJ, Luis E, del Toro R, Freitas C, Bréantn C, Michaud A, Corvol P, Thomas JL, Wu Y, Peale F, Watts RJ, Tessier-Lavigne M, Bagri A, Eichmann A (2011) Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5B. Dev Cell 20(1):33–46

    Article  CAS  PubMed  Google Scholar 

  • Krebs LT, Shutter JR, Tanigaki K, Honjo T, Stark KL, Gridley T (2004) Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev 18(20):2469–2473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lancrin C, Sroczynska P, Stephenson C, Allen T, Kouskoff V, Lacaud G (2009) The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature 457:892–895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Larrivée B, Prahst C, Gordon E, del Toro R, Mathivet T, Duarte A, Simons M, Eichmann A (2012) ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev Cell 22(3):489–500

    Article  PubMed  Google Scholar 

  • Lawson ND, Scheer N, Pham VN, Kim CH, Chitnis AB, Campos-Ortega JA, Weinstein BM (2001) Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128(19):3675–3683

    CAS  PubMed  Google Scholar 

  • Le Douarin NM, Dieterlen-Lièvre F (2013) How studies on the avian embryo have opened new avenues in the understanding of development: a view about the neural and hematopoietic systems. Develop Growth Differ 55:1–14

    Article  Google Scholar 

  • le Noble F, Moyon D, Pardanaud L, Yuan L, Djonov V, Matthijsen R, Bréant C, Fleury V, Eichmann A (2004) Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 131(2):361–375

    Article  PubMed  Google Scholar 

  • Lenard A, Ellertsdottir E, Herwig L, Krudewig A, Sauteur L, Belting HG, Affolter M (2013) In vivo analysis reveals a highly stereotypic morphogenetic pathway of vascular anastomosis. Dev Cell 25(5):492–506

    Article  CAS  PubMed  Google Scholar 

  • Li W, Kohara H, Uchida Y, James JM, Soneji K, Cronshaw DG, Zou YR, Nagasawa T, Mukouyama YS (2013) Peripheral nerve-derived CXCL12 and VEGF-A regulate the patterning of arterial vessel branching in developing limb skin. Dev Cell 24(4):359–371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473(7347):317–325

    Article  CAS  PubMed  Google Scholar 

  • Lucitti JL, Jones EA, Huang C, Chen J, Fraser SE, Dickinson ME (2007) Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development 134(18):3317–3326

    Article  CAS  PubMed  Google Scholar 

  • Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, Frenette PS (2013) Autonomic nerve development contributes to prostate cancer progression. Science 341(6142)

    Google Scholar 

  • Manner J, Seidl W, Steding G (1995) Formation of the cervical flexure: an experimental study on chick embryos. Acta Anat 152:1–10

    Article  CAS  PubMed  Google Scholar 

  • Marcelo KL, Goldie LC, Hirschi KK (2013a) Regulation of endothelial cell differentiation and specification. Circ Res 112(9):1272–1287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marcelo KL, Sills TM, Coskun S, Vasavada H, Sanglikar S, Goldie LC, Hirschi KK (2013b) Hemogenic endothelial cell specification requires c-Kit, Notch signaling, and p27-mediated cell-cycle control. Dev Cell 27(5):504–515

    Article  CAS  PubMed  Google Scholar 

  • Mukouyama YS, Shin D, Britsch S, Taniguchi M, Anderson DJ (2002) Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109(6):693–705

    Article  CAS  PubMed  Google Scholar 

  • Mukouyama YS, Gerber HP, Ferrara N, Gu C, Anderson DJ (2005) Peripheral nerve-derived VEGF promotes arterial differentiation via neuropilin 1-mediated positive feedback. Development 132(5):941–952

    Article  CAS  PubMed  Google Scholar 

  • Murray PDF (1932) The development “in vitro” of blood of the early chick embryo. Proc Roy Soc Lond B 111:497–521

    Article  CAS  Google Scholar 

  • Myers CT, Krieg PA (2013) BMP-mediated specification of the erythroid lineage suppresses endothelial development in blood island precursors. Blood, 7 Oct 2013 [Epub ahead of print]

    Google Scholar 

  • Nishikawa S (2012) Hemangioblast: an in vitro phantom. Wiley Interdiscip Rev Dev Biol 1(4):603–608

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa SI, Nishikawa S, Hirashima M, Matsuyoshi N, Kodama H (1998) Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development 125(9):1747–1757

    CAS  PubMed  Google Scholar 

  • North TE, Goessling W, Peeters M, Li P, Ceol C, Lord AM, Weber GJ, Harris J, Cutting CC, Huang P, Dzierzak E, Zon LI (2009) Hematopoietic stem cell development is dependent on blood flow. Cell 137(4):736–748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling – in control of vascular function. Nat Rev Mol Cell Biol 7(5):359–371

    Article  CAS  PubMed  Google Scholar 

  • Pardanaud L, Eichmann A (2006) Identification, emergence and mobilization of circulating endothelial cells or progenitors in the embryo. Development 133(13):2527–2537

    Article  CAS  PubMed  Google Scholar 

  • Pardanaud L, Eichmann A (2011) Extraembryonic origin of circulating endothelial cells. PLoS One 6(10):e25889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pardanaud L, Altmann C, Kitos P, Dieterlen-Lièvre F, Buck CA (1987) Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development 100(2):339–349

    CAS  PubMed  Google Scholar 

  • Pasquier E, Dias S (2010) Endothelial progenitor cells: hope beyond controversy. Curr Cancer Drug Targets 10(8):914–921

    Article  CAS  PubMed  Google Scholar 

  • Pearson JD (2009) Endothelial progenitor cells – hype or hope? J Thromb Haemost 7(2):255–262

    Article  CAS  PubMed  Google Scholar 

  • Planas-Paz L, Lammert E (2013) Mechanical forces in lymphatic vascular development and disease. Cell Mol Life Sci 70(22):4341–4354

    Article  CAS  PubMed  Google Scholar 

  • Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887

    Article  CAS  PubMed  Google Scholar 

  • Richard C, Drevon C, Canto PY, Villain G, Bollérot K, Lempereur A, Teillet MA, Vincent C, Rosselló Castillo C, Torres M, Piwarzyk E, Speck NA, Souyri M, Jaffredo T (2013) Endothelio-mesenchymal interaction controls runx1 expression and modulates the Notch pathway to initiate aortic hematopoiesis. Dev Cell 24(6):600–611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Risau W (1997) Mechanisms of angiogenesis. Nature 386(6626):671–674

    Article  CAS  PubMed  Google Scholar 

  • Sabin FR (1920) Studies on the origin of blood-vessels and of red blood corpuscles as seen in the living blastoderm of chicks during the second day of incubation. Carnegie Contrib Embryol 272:214–262

    Google Scholar 

  • Schuh AC, Faloon P, Hu QL, Bhimani M, Choi K (1999) In vitro hematopoietic and endothelial potential of flk-1(−/−) embryonic stem cells and embryos. Proc Natl Acad Sci U S A 96(5):2159–2164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376(6535):62–66

    Article  CAS  PubMed  Google Scholar 

  • Simons M, Eichmann A (2013) Lymphatics are in my veins. Science 341(6146):622–624

    Article  CAS  PubMed  Google Scholar 

  • Song JW, Munn LL (2011) Fluid forces control endothelial sprouting. Proc Natl Acad Sci U S A 108(37):15342–15347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strasser GA, Kaminker JS, Tessier-Lavigne M (2010) Microarray analysis of retinal endothelial tip cells identifies CXCR4 as a mediator of tip cell morphology and branching. Blood 115(24):5102–5110

    Article  CAS  PubMed  Google Scholar 

  • Swift MR, Weinstein BM (2009) Arterial-venous specification during development. Circ Res 104(5):576–588

    Article  CAS  PubMed  Google Scholar 

  • Tammela T, Zarkada G, Nurmi H, Jakobsson L, Heinolainen K, Tvorogov D, Zheng W, Franco CA, Murtomäki A, Aranda E, Miura N, Ylä-Herttuala S, Fruttiger M, Mäkinen T, Eichmann A, Pollard JW, Gerhardt H, Alitalo K (2011) VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat Cell Biol 13(10):1202–1213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thoma R (1893) Untersuchungen über due Histogenese und Histomechanik des Gefssytems. Ferdinand Enke, Stuttgart

    Google Scholar 

  • Tirziu D, Jaba IM, Yu P, Larrivée B, Coon BG, Cristofaro B, Zhuang ZW, Lanahan AA, Schwartz MA, Eichmann A, Simons M (2012) Endothelial nuclear factor-κB-dependent regulation of arteriogenesis and branching. Circulation 126(22):2589–2600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ueno H, Weissman IL (2006) Clonal analysis of mouse development reveals a polyclonal origin for yolk sac blood islands. Dev Cell 11(4):519–533

    Article  CAS  PubMed  Google Scholar 

  • Urbich C, Dimmeler S (2004) Endothelial progenitor cells functional characterization. Trends Cardiovasc Med 14(8):318–322

    Article  CAS  PubMed  Google Scholar 

  • Vermot J, Forouhar AS, Liebling M, Wu D, Plummer D, Gharib M, Fraser SE (2009) Reversing blood flows act through klf2a to ensure normal valvulogenesis in the developing heart. PLoS Biol 7(11):e1000246

    Article  PubMed Central  PubMed  Google Scholar 

  • Vogeli KM, Jin SW, Martin GR, Stainier DY (2006) A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula. Nature 443(7109):337–339

    Article  CAS  PubMed  Google Scholar 

  • Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93(5):741–753

    Article  CAS  PubMed  Google Scholar 

  • Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17(11):1359–1370

    Article  CAS  PubMed  Google Scholar 

  • Wheater PR, Burkitt HG, Daniels VG (1978) Functional histology: a text and colour atlas. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Xu K, Cleaver O (2011) Tubulogenesis during blood vessel formation. Semin Cell Dev Biol 22(9):993–1004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, Naito M, Nakao K (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408(6808):92–96

    Article  CAS  PubMed  Google Scholar 

  • You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY (2005) Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 435(7038):98–104

    Article  CAS  PubMed  Google Scholar 

  • Yuan L, Moyon D, Pardanaud L, Bréant C, Karkkainen MJ, Alitalo K, Eichmann A (2002) Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 129(20):4797–4806

    CAS  PubMed  Google Scholar 

  • Zape JP, Zovein AC (2011) Hemogenic endothelium: origins, regulation, and implications for vascular biology. Semin Cell Dev Biol 22(9):1036–1047

    Article  PubMed  Google Scholar 

  • Zentilin L, Tafuro S, Zacchigna S, Arsic N, Pattarini L, Sinigaglia M, Giacca M (2006) Bone marrow mononuclear cells are recruited to the sites of VEGF-induced neovascularization but are not incorporated into the newly formed vessels. Blood 107(9):3546–3554

    Article  CAS  PubMed  Google Scholar 

  • Zhong TP, Childs S, Leu JP, Fishman MC (2001) Gridlock signalling pathway fashions the first embryonic artery. Nature 414(6860):216–220

    Article  CAS  PubMed  Google Scholar 

  • Zovein AC, Hofmann JJ, Lynch M, French WJ, Turlo KA, Yang Y, Becker MS, Zanetta L, Dejana E, Gasson JC, Tallquist MD, Iruela-Arispe ML (2008) Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell 3:625–636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zygmunt T, Gay CM, Blondelle J, Singh MK, Flaherty KM, Means PC, Herwig L, Krudewig A, Belting HG, Affolter M, Epstein JA, Torres-Vázquez J (2011) Semaphorin-PlexinD1 signaling limits angiogenic potential via the VEGF decoy receptor sFlt1. Dev Cell 21(2):301–314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Eichmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag France

About this chapter

Cite this chapter

Eichmann, A., Pardanaud, L. (2014). Emergence of Endothelial Cells During Vascular Development. In: Feige, JJ., Pagès, G., Soncin, F. (eds) Molecular Mechanisms of Angiogenesis. Springer, Paris. https://doi.org/10.1007/978-2-8178-0466-8_1

Download citation

Publish with us

Policies and ethics