Skip to main content

La neuroanatomie des émotions

  • Chapter
Psychochirurgie
  • 636 Accesses

En résumé

Le système limbique, commun à de nombreux mammifères, désigne un ensemble de structures anatomiques mises en jeu lors des émotions. Théorisé au siècle dernier, par Papez puis Mac Lean, ce système comprend le cortex préfrontal — où les émotions accèdent à la conscience — ainsi que l’hippocampe, l’amygdale et l’hypothalamus. L’hypothalamus, et son prolongement l’hypophyse, provoque les manifestations viscérales liées à ces émotions. Ces manifestations émotionnelles peuvent être déclenchées par la conscience mais inversement, la lecture de l’état corporel, grâce notamment à l’insula, peut les rendre conscientes. La régulation de ces réponses émotionnelles s’effectue aussi par des structures sous- corticales: les noyaux gris centraux. Ces noyaux — composés par le thalamus, le striatum, le pallidum ainsi que par les noyaux sous- thalamiques et accumbens — sont liés au cortex par des circuits en boucles, boucles qui possèdent un rôle d’interface entre les différentes composantes — émotionnelles, cognitives et motrices — de nos comportements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Hippocrate, Jouanna J(2003) La maladie sacrée. Texte établi et trad. par Jacques Jouanna. Les Belles lettres, Paris

    Google Scholar 

  2. Freud S, Frossard J, Classiques LA (2010) Au-delà du principe de plaisir. Texte intégral. Alexis Brun productions, [Caen]

    Google Scholar 

  3. Cabanis PJG (1823) Oeuvres complètes de Cabanis. Bossange Frères, Paris

    Google Scholar 

  4. Broca P (1878) Anatomie comparée des circonvolutions cérébrales: le grand lobe limbique. Rev Anthropol: 385–498

    Google Scholar 

  5. Papez JW (1937) A proposed mechanism of emotion. Arch Neurol Psychiatry 38: 725–43

    Google Scholar 

  6. MacLean P (1949) Psychosomatic disease and the visceral brain; recent developments bearing on the Papez theory of emotion. Psychosom Med 11: 338–53

    PubMed  CAS  Google Scholar 

  7. Kotter R, Stephan KE (1997) Useless or helpful? The «limbic system» concept. Rev Neurosci 8: 139–45

    PubMed  CAS  Google Scholar 

  8. Burruss JW, Hurley RA, Taber KH, et al. (2000) Functional neuroanatomy of the frontal lobe circuits. Radiology 214: 227–30

    PubMed  CAS  Google Scholar 

  9. Pirot S (2003) L’anatomie fonctionnelle du cortex préfrontal: du singe à l’homme. Encephale 20: 27–31

    Google Scholar 

  10. Fuster JM (2001) The prefrontal cortex—an update: time is of the essence. Neuron 30: 319–33

    PubMed  CAS  Google Scholar 

  11. Bergson H (1911) L’énergie spirituelle. Ed. Alcan, Paris

    Google Scholar 

  12. Rauch SL, Dougherty DD, Malone D, et al. (2006) A functional neuroimaging investigation of deep brain stimulation in patients with obsessive-compulsive disorder. J Neurosurg 104: 558–65

    PubMed  Google Scholar 

  13. Drevets WC (1998) Functional neuroimaging studies of depression: the anatomy of melancholia. Annu Rev Med 49: 341–61

    PubMed  CAS  Google Scholar 

  14. Baxter LR Jr, Schwartz JM, Phelps ME, et al. (1989) Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry 46: 243–50

    PubMed  CAS  Google Scholar 

  15. Mottaghy FM, Keller CE, Gangitano M, et al. (2002) Correlation of cerebral blood flow and treatment effects of repetitive transcranial magnetic stimulation in depressed patients. Psychiatry Res 115: 1–14

    PubMed  Google Scholar 

  16. Kito S, Fujita K, Koga Y (2008) Changes in regional cerebral blood flow after repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex in treatment-resistant depression. J Neuropsychiatry Clin Neurosci 20: 74–80

    PubMed  Google Scholar 

  17. Richieri R, Adida M, Dumas R, et al. (2010) [Affective disorders and repetitive transcranial magnetic stimulation: Therapeutic innovations]. Encephale 36Suppl 6: S197–201

    PubMed  Google Scholar 

  18. Bechara A, Damasio H, Damasio AR (2000) Emotion, decision making and the orbitofrontal cortex. Cereb Cortex 10: 295–307

    PubMed  CAS  Google Scholar 

  19. Ollat HP (2004) Cortex orbitofrontal, comportement et émotions. Encéphale 25: 25–33

    Google Scholar 

  20. Rolls ET (2004) The functions of the orbitofrontal cortex. Brain Cogn 55: 11–29

    PubMed  Google Scholar 

  21. Tremblay L, Schultz W (1999) Relative reward preference in primate orbitofrontal cortex. Nature 398: 704–8

    PubMed  CAS  Google Scholar 

  22. Aouizerate BMG, Cuny C, Guehl E, et al. (2005) Stimulation cérébrale profonde du striatum ventral dans le traitement du trouble obsessionnel-compulsif avec dépression majeure. Médecine et Sciences 21: 811–3

    Google Scholar 

  23. Damasio H, Damasio AR (1989) Lesion analysis in neuropsychology. Oxford University Press, New York

    Google Scholar 

  24. Machlin SR, Harris GJ, Pearlson GD, et al. (1991) Elevated medial-frontal cerebral blood flow in obsessive-compulsive patients: a SPECT study. Am J Psychiatry 148: 1240–2

    PubMed  CAS  Google Scholar 

  25. Rauch SL, Jenike MA, Alpert NM, et al. (1994) Regional cerebral blood flow measured during symptom provocation in obsessive-compulsive disorder using oxygen 15-labeled carbon dioxide and positron emission tomography. Arch Gen Psychiatry 51: 62–70

    PubMed  CAS  Google Scholar 

  26. Baxter LR Jr (1994) Positron emission tomography studies of cerebral glucose metabolism in obsessive compulsive disorder. J Clin Psychiatry 55 Suppl: 54–9

    PubMed  Google Scholar 

  27. Swedo SE, Pietrini P, Leonard HL, et al. (1992) Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder. Revisualization during pharmacotherapy. Arch Gen Psychiatry 49: 690–4

    PubMed  CAS  Google Scholar 

  28. Trivedi MH (1996) Functional neuroanatomy of obsessive-compulsive disorder. J Clin Psychiatry 57Suppl 8: 26–35; discussion 6

    PubMed  Google Scholar 

  29. Brown JW, Braver TS (2005) Learned predictions of error likelihood in the anterior cingulate cortex. Science 307: 1118–21

    PubMed  CAS  Google Scholar 

  30. Damasio AR, Blanc M (1995) L’erreur de Descartes, la raison des émotions. Traduit de l’anglais par Marcel Blanc. O. Jacob, Paris

    Google Scholar 

  31. Mayberg HS, Liotti M, Brannan SK, et al. (1999) Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 156: 675–82

    PubMed  CAS  Google Scholar 

  32. Dougherty DD, Weiss AP, Cosgrove GR, et al. (2003) Cerebral metabolic correlates as potential predictors of response to anterior cingulotomy for treatment of major depression. J Neurosurg 99: 1010–7

    PubMed  Google Scholar 

  33. Kluver C (1937) Psychic ‘blindness’ and other symptoms following bilateral temporal lobectomy in Rhesus monkeys. Am J Physiol: 352–3

    Google Scholar 

  34. Clarac F, Ternaux JP, Buser P (2008) Encyclopédie historique des neurosciences du neurone à l’émergence de la pensée. Avant-propos de Dominique Wolton. Préface de Pierre Buser. De Boeck, Bruxelles [Paris]

    Google Scholar 

  35. Weiskrantz L (1956) Behavioral changes associated with ablation of the amygdaloid complex in monkeys. J Comp Physiol Psychol 49: 381–91

    PubMed  CAS  Google Scholar 

  36. Gil R, Lamoglia E (2010) Neuropsychologie. Elsevier Health Sciences, France

    Google Scholar 

  37. Martin JH (2003) Neuroanatomy: Text and Atlas. McGraw-Hill

    Google Scholar 

  38. Kunst-Wilson WR, Zajonc RB (1980) Affective discrimination of stimuli that cannot be recognized. Science 207: 557–8

    PubMed  CAS  Google Scholar 

  39. Cannon WB (1931) Again the James-Lange and the thalamic theories of emotion. Psychological Review 38: 281–95

    Google Scholar 

  40. Adolphs R, Tranel D, Damasio H, et al. (1994) Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372: 669–72

    PubMed  CAS  Google Scholar 

  41. Ledoux JE (1999) The emotional brain: the mysterious underpinnings of emotional life. Phoenix, London

    Google Scholar 

  42. Siever LJ (2008) Neurobiology of aggression and violence. Am J Psychiatry 165: 429–42

    PubMed  Google Scholar 

  43. Narabayashi H, Uno M (1966) Long range results of stereotaxic amygdalotomy for behavior disorders. Confin Neurol 27: 168–71

    PubMed  CAS  Google Scholar 

  44. Narabayashi H, Nagao T, Saito Y, et al. (1963) Stereotaxic amygdalotomy for behavior disorders. Arch Neurol 9: 1–16

    PubMed  CAS  Google Scholar 

  45. Balasubramaniam V, Ramamurthi B (1970) Stereotaxic amygdalotomy in behavior disorders. Confin Neurol 32: 367–73

    PubMed  CAS  Google Scholar 

  46. Hitchcock E, Cairns V (1973) Amygdalotomy. Postgrad Med J 49: 894–904

    PubMed  CAS  Google Scholar 

  47. Small IF, Heimburger RF, Small JG, et al. (1977) Follow-up of stereotaxic amygdalotomy for seizure and behavior disorders. Biol Psychiatry 12: 401–11

    PubMed  CAS  Google Scholar 

  48. Mempel E, Witkiewicz B, Stadnicki R, et al. (1980) The effect of medial amygdalotomy and anterior hippocampotomy on behavior and seizures in epileptic patients. Acta Neurochir Suppl (Wien) 30: 161–7

    CAS  Google Scholar 

  49. Jacobson R (1986) Disorders of facial recognition, social behaviour and affect after combined bilateral amygdalotomy and subcaudate tractotomy—a clinical and experimental study. Psychol Med 16: 439–50

    PubMed  CAS  Google Scholar 

  50. Ramamurthi B (1988) Stereotactic operation in behaviour disorders. Amygdalotomy and hypothalamotomy. Acta Neurochir Suppl (Wien) 44: 152–7

    CAS  Google Scholar 

  51. Fountas KN, Smith JR (2007) Historical evolution of stereotactic amygdalotomy for the management of severe aggression. J Neurosurg 106: 710–3

    PubMed  Google Scholar 

  52. Anderson AK, Phelps EA (2001) Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature 411: 305–9

    PubMed  CAS  Google Scholar 

  53. Franzini A, Ferroli P, Leone M, et al. (2003) Stimulation of the posterior hypothalamus for treatment of chronic intractable cluster headaches: first reported series. Neurosurgery 52: 1095–9; discussion 9-101

    PubMed  Google Scholar 

  54. Cahill L, Babinsky R, Markowitsch HJ, et al. (1995) The amygdala and emotional memory. Nature 377: 295–6

    PubMed  CAS  Google Scholar 

  55. Ambroggi F, Ishikawa A, Fields HL, et al. (2008) Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons. Neuron 59: 648–61

    PubMed  CAS  Google Scholar 

  56. Frenois F, Stinus L, Di Blasi F, et al. (2005) A specific limbic circuit underlies opiate withdrawal memories. J Neurosci 25: 1366–74

    PubMed  CAS  Google Scholar 

  57. Hafting T, Fyhn M, Molden S, et al. (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436: 801–6

    PubMed  CAS  Google Scholar 

  58. Bear MF, Connors BW, Paradiso MA, et al. (2007) Neurosciences à la découverte du cerveau traduction et adaptation françaises, André Nieoullon, 3e éd. Pradel, Rueil-Malmaison

    Google Scholar 

  59. Vincent JD (2012) Le cerveau sur mesure. Odile Jacob, Paris

    Google Scholar 

  60. Bontempi B, Laurent-Demir C, Destrade C, et al. (1999) Time-dependent reorganization of brain circuitry underlying long-term memory storage. Nature 400: 671–5

    PubMed  CAS  Google Scholar 

  61. Maguire EA, Frackowiak RS, Frith CD (1997) Recalling routes around london: activation of the right hippocampus in taxi drivers. J Neurosci 17: 7103–10

    PubMed  CAS  Google Scholar 

  62. Suthana N, Haneef Z, Stern J, et al. (2012) Memory enhancement and deep-brain stimulation of the entorhinal area. N Engl J Med 366: 502–10

    PubMed  CAS  Google Scholar 

  63. Hamani C, Mcandrews MP, Cohn M, et al. (2008) Memory enhancement induced by hypothalamic/fornix deep brain stimulation. Ann Neurol 63: 119–23

    PubMed  Google Scholar 

  64. Laxton AW, Tang-Wai DF, McAndrews MP,et al. (2010) A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease. Ann Neurol 68: 521–34

    PubMed  CAS  Google Scholar 

  65. Damasio AR, Fidel JL (2010) L’autre moi-même les nouvelles cartes du cerveau, de la conscience et des émotions. Traduit de l’anglais (États-Unis) par Jean-Luc Fidel. Odile Jacob, Paris

    Google Scholar 

  66. Ansermet F, Magistretti P (2004) À chacun son cerveau plasticité neuronale et inconscient. Odile Jacob, Paris

    Google Scholar 

  67. Hohmann GW (1966) Some effects of spinal cord lesions on experienced emotional feelings. Psychophysiology 3: 143–56

    PubMed  CAS  Google Scholar 

  68. Beatty J (1995) Principles Behavioral Neuroscience. McGraw-Hill College

    Google Scholar 

  69. Nicotra A, Critchley HD, Mathias CJ, et al. (2006) Emotional and autonomic consequences of spinal cord injury explored using functional brain imaging. Brain 129: 718–28

    PubMed  Google Scholar 

  70. Heller AC, Amar AP, Liu CY, et al. (2006) Surgery of the mind and mood: a mosaic of issues in time and evolution. Neurosurgery 59: 720–33; discussion 33-9

    PubMed  Google Scholar 

  71. Torres N, Chabardes S, Benabid AL (2011) Rationale for hypothalamus-deep brain stimulation in food intake disorders and obesity. Adv Tech Stand Neurosurg 36: 17–30

    PubMed  CAS  Google Scholar 

  72. Anand BK, Brobeck JR (1951) Localization of a “feeding center” in the hypothalamus of the rat. Proc Soc Exp Biol Med 77: 323–4

    PubMed  CAS  Google Scholar 

  73. Goldney RD (1978) Craniopharyngioma simulating anorexia nervosa. J Nerv Ment Dis 166: 135-8

    PubMed  CAS  Google Scholar 

  74. Heron GB, Johnston DA (1976) Hypothalamic tumor presenting as anorexia nervosa. Am J Psychiatry 133: 580–2

    PubMed  CAS  Google Scholar 

  75. Weller RA, Weller EB (1982) Anorexia nervosa in a patient with an infiltrating tumor of the hypothalamus. Am J Psychiatry 139: 824–5

    PubMed  CAS  Google Scholar 

  76. Anand BK, Dua S, Shoenberg K (1955) Hypothalamic control of food intake in cats and monkeys. J Physiol 127: 143–52

    PubMed  CAS  Google Scholar 

  77. Quaade F (1974) Letter: Stereotaxy for obesity. Lancet 1: 267

    PubMed  CAS  Google Scholar 

  78. Maschke M, Tuite PJ, Pickett K, et al. (2005) The effect of subthalamic nucleus stimulation on kinaesthesia in Parkinson’s disease. J Neurol Neurosurg Psychiatry 76: 569–71

    PubMed  CAS  Google Scholar 

  79. Tuite PJ, Maxwell RE, Ikramuddin S, et al. (2005) Weight and body mass index in Parkinson’s disease patients after deep brain stimulation surgery. Parkinsonism Relat Disord 11: 247–52

    PubMed  Google Scholar 

  80. Novakova L, Ruzicka E, Jech R, et al. (2007) Increase in body weight is a non-motor side effect of deep brain stimulation of the subthalamic nucleus in Parkinson’s disease. Neuro Endocrinol Lett 28: 21–5

    PubMed  Google Scholar 

  81. Tomycz ND, Whiting DM, Oh MY (2012) Deep brain stimulation for obesity—from theoretical foundations to designing the first human pilot study. Neurosurg Rev 35: 37–42; discussion: 3

    PubMed  Google Scholar 

  82. Sano K, Mayanagi Y, Sekino H, et al. (1970) Results of timulation and destruction of the posterior hypothalamus in man. J Neurosurg 33: 689–707

    PubMed  CAS  Google Scholar 

  83. Sano K, Mayanagi Y (1988) Posteromedial hypothalamotomy in the treatment of violent, aggressive behaviour. Acta Neurochir Suppl (Wien) 44: 145–51

    CAS  Google Scholar 

  84. Bejjani BP, Houeto JL, Hariz M, et al. (2002) Aggressive behavior induced by intraoperative stimulation in the triangle of Sano. Neurology 59: 1425–7

    PubMed  CAS  Google Scholar 

  85. May A, Bahra A, Buchel C, et al. (1998) Hypothalamic activation in cluster headache attacks. Lancet 352: 275–8

    PubMed  CAS  Google Scholar 

  86. Leone M, Franzini A, Bussone G (2001) Stereotactic stimulation of posterior hypothalamic gray matter in a patient with intractable cluster headache. N Engl J Med 345: 1428–9

    PubMed  CAS  Google Scholar 

  87. Woon FL, Sood S, Hedges DW (2010) Hippocampal volume deficits associated with exposure to psychological trauma and posttraumatic stress disorder in adults: a meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 34: 1181–8

    PubMed  Google Scholar 

  88. Brown ES, Rush AJ, Mcewen BS (1999) Hippocampal remodeling and damage by corticosteroids: implications for mood disorders. Neuropsychopharmacology 21: 474–84

    PubMed  CAS  Google Scholar 

  89. Starkman MN, Gebarski SS, Berent S, et al. (1992) Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing’s syndrome. Biol Psychiatry 32: 756–65

    PubMed  CAS  Google Scholar 

  90. Kosfeld M, Heinrichs M, Zak PJ, et al. (2005) Oxytocin increases trust in humans. Nature 435: 673–6

    PubMed  CAS  Google Scholar 

  91. Andari E, Duhamel JR, Zalla T, et al. (2010) Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proc Natl Acad Sci USA 107: 4389–94

    PubMed  CAS  Google Scholar 

  92. Feifel D, Macdonald K, Nguyen A, et al. (2010) Adjunctive intranasal oxytocin reduces symptoms in schizophrenia patients. Biol Psychiatry 68: 678–80

    PubMed  CAS  Google Scholar 

  93. Geisler S, Trimble M (2008) The lateral habenula: no longer neglected. CNS Spectr 13: 484–9

    PubMed  Google Scholar 

  94. Hikosaka O, Sesack SR, Lecourtier L, et al. (2008) Habenula: crossroad between the basal ganglia and the limbic system. J Neurosci 28: 11825–9

    PubMed  CAS  Google Scholar 

  95. Sartorius A, Kiening KL, Kirsch P, et al. (2010) Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol Psychiatry 67: e9–e11

    PubMed  Google Scholar 

  96. Meng H, Wang Y, Huang M, et al. (2011) Chronic deep brain stimulation of the lateral habenula nucleus in a rat model of depression. Brain Res 1422: 32–8

    PubMed  CAS  Google Scholar 

  97. Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47: 419–27

    PubMed  CAS  Google Scholar 

  98. Heath RB (1954) Studies in Schyzophrenia: a multidisciplinary approach to mind-brain relationship. Harvard University Press, Cambridge

    Google Scholar 

  99. Pool JL (1954) Psychosurgery in older people. J Am Geriatr Soc 2: 456–66

    PubMed  CAS  Google Scholar 

  100. Burchiel K (2002) Surgical management of pain. Thieme

    Google Scholar 

  101. Schvarcz JR (1993) Long-term results of stimulation of the septal area for relief of neurogenic pain. Acta Neurochir Suppl (Wien) 58: 154–5

    CAS  Google Scholar 

  102. Schvarcz JR (1985) Chronic stimulation of the septal area for the relief of intractable pain. Appl Neurophysiol 48: 191–4

    PubMed  CAS  Google Scholar 

  103. Heath RG (1963) Electrical self-stimulation of the brain in man. Am J Psychiatry 120: 571–7

    PubMed  CAS  Google Scholar 

  104. Oshima H, Katayama Y (2010) Neuroethics of deep brain stimulation for mental disorders: brain stimulation reward in humans. Neurol Med Chir (Tokyo) 50: 845–52

    Google Scholar 

  105. Heath R (1960) Evaluation of seven years’ experience with depth electrode studies in human patients. In: Hoeber PB, ed. Electrical studies on the unanesthetized human brain. O’Doherty DS, editors, New York

    Google Scholar 

  106. Gol A (1967) Relief of pain by electrical stimulation of the septal area. J Neurol Sci 5: 115–20

    PubMed  CAS  Google Scholar 

  107. Moan CH, Heath R (1972) Septal stimulation for the initiation of heterosexual behavior in a homosexual male. Experimental Psychiatry 3: 23–6

    Google Scholar 

  108. Hodaie M, Wennberg RA, Dostrovsky JO, et al. (2002) Chronic anterior thalamus stimulation for intractable epilepsy. Epilepsia 43: 603–8

    PubMed  Google Scholar 

  109. Polio C, Villemure JG (2007) Rationale, mechanisms of efficacy, anatomical targets and future prospects of electrical deep brain stimulation for epilepsy. Acta Neurochir Suppl 97: 311–20

    Google Scholar 

  110. Chabardes S, Minotti L, Chassagnon S, et al. (2008) [Basal ganglia deep-brain stimulation for treatment of drug-resistant epilepsy: review and current data]. Neurochirurgie 54: 436–40

    PubMed  CAS  Google Scholar 

  111. Alexander GE, Delong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9: 357–81

    PubMed  CAS  Google Scholar 

  112. Hendelman W (2006) Atlas Of functional neuroanatomy. Taylor & Francis Group

    Google Scholar 

  113. Llinas RR, Ribary U, Jeanmonod D, et al. (1999) Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci USA 96: 15222–7

    PubMed  CAS  Google Scholar 

  114. Yelnik J (2002) Functional anatomy of the basal ganglia. Mov Disord 17Suppl 3: S15–21

    PubMed  Google Scholar 

  115. Kumar R, Lozano AM, Kim YJ, et al. (1998) Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson’s disease. Neurology 51: 850–5

    PubMed  CAS  Google Scholar 

  116. Pillon B, Ardouin C, Damier P, et al. (2000) Neuropsychological changes between “off” and “on” STN or GPi stimulation in Parkinson’s disease. Neurology 55: 411–8

    PubMed  CAS  Google Scholar 

  117. Alegret M, Junque C, Valldeoriola F, et al. (2001) Effects of bilateral subthalamic stimulation on cognitive function in Parkinson disease. Arch Neurol 58: 1223–7

    PubMed  CAS  Google Scholar 

  118. Brusa L, Pierantozzi M, Peppe A, et al. (2001) Deep brain stimulation (DBS) attentional effects parallel those of 1-dopa treatment. J Neural Transm 108: 1021–7

    PubMed  CAS  Google Scholar 

  119. Dujardin K, Defebvre L, Krystkowiak P, et al. (2001) Influence of chronic bilateral stimulation of the subthalamic nucleus on cognitive function in Parkinson’s disease. J Neurol 248: 603–11

    PubMed  CAS  Google Scholar 

  120. Moretti R, Torre P, Antonello RM, et al. (2001) Effects on cognitive abilities following subthalamic nucleus stimulation in Parkinson’s disease. Eur J Neurol 8: 726–7

    PubMed  CAS  Google Scholar 

  121. Moretti R, Torre P, Antonello RM, et al. (2002) Cognitive changes following subthalamic nucleus stimulation in two patients with Parkinson disease. Percept Mot Skills 95: 477–86

    PubMed  Google Scholar 

  122. Valldeoriola F, Pilleri M, Tolosa E, et al. (2002) Bilateral subthalamic stimulation monotherapy in advanced Parkinson’s disease: long-term follow-up of patients. Mov Disord 17: 125–32

    PubMed  Google Scholar 

  123. Daniele A, Albanese A, Contarino MF, et al. (2003) Cognitive and behavioural effects of chronic stimulation of the subthalamic nucleus in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 74: 175–82

    PubMed  CAS  Google Scholar 

  124. Gironeil A, Kulisevsky J, Rami L, et al. (2003) Effects of pallidotomy and bilateral subthalamic stimulation on cognitive function in Parkinson disease. A controlled comparative study. J Neurol 250: 917–23

    Google Scholar 

  125. Saint-Cyr JA, Trepanier LL, Kumar R, et cd. (2000) Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson’s disease. Brain 123 (Pt 10): 2091–108

    PubMed  Google Scholar 

  126. Trepanier LL, Kumar R, Lozano AM, et al. (2000) Neuropsychological outcome of GPi pallidotomy and GPi or STN deep brain stimulation in Parkinson’s disease. Brain Cogn 42: 324–47

    PubMed  CAS  Google Scholar 

  127. Kleiner-Fisman G, Fisman DN, Sime E, et al. (2003) Long-term follow up of bilateral deep brain stimulation of the subthalamic nucleus in patients with advanced Parkinson disease. J Neurosurg 99: 489–95

    PubMed  Google Scholar 

  128. Hershey T, Revilla FJ, Wernle A, et al. (2004) Stimulation of STN impairs aspects of cognitive control in PD. Neurology 62: 1110–4

    PubMed  CAS  Google Scholar 

  129. Moretti R, Torre P, Antonello RM, et al. (2003) Neuropsychological changes after subthalamic nucleus stimulation: a 12 month follow-up in nine patients with Parkinson’s disease. Parkinsonism Relat Disord 10: 73–9

    PubMed  Google Scholar 

  130. Temel Y, Visser-Vandewalle V, Aendekerk B, et al. (2005) Acute and separate modulation of motor and cognitive performance in parkinsonian rats by bilateral stimulation of the subthalamic nucleus. Exp Neurol 193: 43–52

    PubMed  CAS  Google Scholar 

  131. Krack P, Kumar R, Ardouin C, et al. (2001) Mirthful laughter induced by subthalamic nucleus stimulation. Mov Disord 16: 867–75

    PubMed  CAS  Google Scholar 

  132. Kulisevsky J, Berthier ML, Gironeil A, et al. (2002) Mania following deep brain stimulation for Parkinson’s disease. Neurology 59: 1421–4

    PubMed  CAS  Google Scholar 

  133. Romito LM, Raja M, Daniele A, et al. (2002) Transient mania with hypersexuality after surgery for high frequency stimulation of the subthalamic nucleus in Parkinson’s disease. Mov Disord 17: 1371–4

    PubMed  Google Scholar 

  134. Rodriguez MC, Guridi OJ, Alvarez L, et al. (1998) The subthalamic nucleus and tremor in Parkinson’s disease. Mov Disord 13Suppl 3: 111–8

    PubMed  Google Scholar 

  135. Kumar R, Lozano AM, Sime E, et al. (1999) Comparative effects of unilateral and bilateral subthalamic nucleus deep brain stimulation. Neurology 53: 561–6

    PubMed  CAS  Google Scholar 

  136. Moro E, Scerrati M, Romito LM, et al. (1999) Chronic subthalamic nucleus stimulation reduces medication requirements in Parkinson’s disease. Neurology 53: 85–90

    PubMed  CAS  Google Scholar 

  137. Molinuevo JL, Valldeoriola F, Tolosa E, et al. (2000) Levodopa withdrawal after bilateral subthalamic nucleus stimulation in advanced Parkinson disease. Arch Neurol 57: 983–8

    PubMed  CAS  Google Scholar 

  138. Berney A, Vingerhoets F, Perrin A, et al. (2002) Effect on mood of subthalamic DBS for Parkinson’s disease: a consecutive series of 24 patients. Neurology 59: 1427–9

    PubMed  CAS  Google Scholar 

  139. Brown RG (2002) Behavioural disorders, Parkinson’s disease, and subthalamic stimulation. J Neurol Neurosurg Psychiatry 72: 689

    PubMed  CAS  Google Scholar 

  140. Doshi PK, Chhaya N, Bhatt MH (2002) Depression leading to attempted suicide after bilateral subthalamic nucleus stimulation for Parkinson’s disease. Mov Disord 17: 1084–5

    PubMed  Google Scholar 

  141. Houeto JL, Mesnage V, Mallet L, et al. (2002) Behavioural disorders, Parkinson’s disease and subthalamic stimulation. J Neurol Neurosurg Psychiatry 72: 701–7

    PubMed  CAS  Google Scholar 

  142. Martinez-Martin P, Valldeoriola F, Tolosa E,etal. (2002) Bilateral subthalamic nucleus stimulation and quality of life in advanced Parkinson’s disease. Mov Disord 17: 372–7

    PubMed  Google Scholar 

  143. Ostergaard K, Sunde N, Dupont E (2002) Effects of bilateral stimulation of the subthalamic nucleus in patients with severe Parkinson’s disease and motor fluctuations. Mov Disord 17: 693–700

    PubMed  Google Scholar 

  144. Thobois S, Mertens P, Guenot M, et al. (2002) Subthalamic nucleus stimulation in Parkinson’s disease: clinical evaluation of 18 patients. J Neurol 249: 529–34

    PubMed  CAS  Google Scholar 

  145. Iranzo A, Valldeoriola F, Santamaria J, et al. (2002) Sleep symptoms and polysomnographic architecture in advanced Parkinson’s disease after chronic bilateral subthalamic stimulation. J Neurol Neurosurg Psychiatry 72: 661–4

    PubMed  CAS  Google Scholar 

  146. Vingerhoets FJ, Villemure JG, Temperli P, et al. (2002) Subthalamic DBS replaces levodopa in Parkinson’s disease: two-year follow-up. Neurology 58: 396–401

    PubMed  Google Scholar 

  147. Volkmann J, Allert N, Voges J, et al. (2001) Safety and efficacy of pallidal or subthalamic nucleus stimulation in advanced PD. Neurology 56: 548–51

    PubMed  CAS  Google Scholar 

  148. Krack P, Batir A, Van Blercom N, et al. (2003) Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 349: 1925–34

    PubMed  CAS  Google Scholar 

  149. Krause M, Fogel W, Heck A, et al. (2001) Deep brain stimulation for the treatment of Parkinson’s disease: subthalamic nucleus versus globus pallidus internus. J Neurol Neurosurg Psychiatry 70: 464–70

    PubMed  CAS  Google Scholar 

  150. Burn DJ, Troster AI (2004) Neuropsychiatric complications of medical and surgical therapies for Parkinson’s disease. J Geriatr Psychiatry Neurol 17: 172–80

    PubMed  Google Scholar 

  151. Witjas T, Baunez C, Henry JM, et al. (2005) Addiction in Parkinson’s disease: impact of subthalamic nucleus deep brain stimulation. Mov Disord 20: 1052–5

    PubMed  Google Scholar 

  152. Temel Y, Kessels A, Tan S, et al. (2006) Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson disease: a systematic review. Parkinsonism Relat Disord 12: 265–72

    PubMed  Google Scholar 

  153. Nowinski WL, Belov D, Pollak P, et al. (2005) Statistical analysis of 168 bilateral subthalamic nucleus implantations by means of the probabilistic functional atlas. Neurosurgery 57: 319–30; discussion: 30

    PubMed  Google Scholar 

  154. Aouizerate B, Martin-Guehl C, Cuny E, et al. (2005) [Deep brain stimulation of the ventral striatum in the treatment of obsessive-compulsive disorder and major depression]. Med Sci (Paris) 21: 811–3

    Google Scholar 

  155. Jog MS, Kubota Y, Connolly CI, et al. (1999) Building neural representations of habits. Science 286: 1745–9

    PubMed  CAS  Google Scholar 

  156. Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14: 69–97

    PubMed  CAS  Google Scholar 

  157. Sturm V, Lenartz D, Koulousakis A, et al. (2003) The nucleus accumbens: a target for deep brain stimulation in obsessive-compulsive-and anxiety-disorders. J Chem Neuroanat 26: 293–9

    PubMed  Google Scholar 

  158. Heinze HJH, Voges M, Hinrichs J, et al. (2009) Counteracting incentive sensitization in severe alcohol dependence using deep brain stimulation of the nucleus accumbens: clinical and basic science aspects. Frontiers in Human Neuroscience 3

    Google Scholar 

  159. Huff W, Lenartz D, Schormann M, et al. (2010) Unilateral deep brain stimulation of the nucleus accumbens in patients with treatment-resistant obsessive-compulsive disorder: Outcomes after one year. Clin Neurol Neurosurg 112: 137–43

    PubMed  Google Scholar 

  160. Van Kuyck K, Gabriels L, Cosyns P, et al. (2007) Behavioural and physiological effects of electrical stimulation in the nucleus accumbens: a review. Acta Neurochir Suppl 97: 375–91

    PubMed  Google Scholar 

  161. Lopes Da Silva FH, Arnolds DE, Neijt HC (1984) A functional link between the limbic cortex and ventral striatum: physiology of the subiculum accumbens pathway. Exp Brain Res 55: 205–14

    PubMed  CAS  Google Scholar 

  162. Defrance JF, Marchand JF, Sikes RW, et al. (1985) Characterization of fimbria input to nucleus accumbens. J Neurophysiol 54: 1553–67

    PubMed  CAS  Google Scholar 

  163. Yang CR, Mogenson GJ (1984) Electrophysiological responses of neurones in the nucleus accumbens to hippocampal stimulation and the attenuation of the excitatory responses by the mesolimbic dopaminergic system. Brain Res 324: 69–84

    PubMed  CAS  Google Scholar 

  164. Berendse HW, Groenewegen HJ (1990) Organization of the thalamostriatal projections in the rat, with special emphasis on the ventral striatum. J Comp Neurol 299: 187–228

    PubMed  CAS  Google Scholar 

  165. Brog JS, Salyapongse A, Deutch AY, et al. (1993) The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 338: 255–78

    PubMed  CAS  Google Scholar 

  166. Montaron MF, Deniau JM, Menetrey A, et al. (1996) Prefrontal cortex inputs of the nucleus accumbens-nigro-thalamic circuit. Neuroscience 71: 371–82

    PubMed  CAS  Google Scholar 

  167. De Koning PP, Van Den Munckhof P, Figee M, et al. (2012). Deep bain stimulation in obsessive-compulsive disorder targeted at the nucleus accumbens. In: Denys D, Feenstra M, Schuurman R, ed. Deep Brain Stimulation: a new frontier in psychiatry. Springer Verlag

    Google Scholar 

  168. Yang CR, Mogenson GJ (1989) Ventral pallidal neuronal responses to dopamine receptor stimulation in the nucleus accumbens. Brain Res 489: 237–46

    PubMed  CAS  Google Scholar 

  169. Churchill L, Kalivas PW (1994) A topographically organized gamma-aminobutyric acid projection from the ventral pallidum to the nucleus accumbens in the rat. J Comp Neurol 345: 579–95

    PubMed  CAS  Google Scholar 

  170. Zaborszky L, Cullinan WE (1992) Projections from the nucleus accumbens to cholinergic neurons of the ventral pallidum: a correlated light and electron microscopic double-immunolabeling study in rat. Brain Res 570: 92–101

    PubMed  CAS  Google Scholar 

  171. Fallon JH, Moore RY (1978) Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum. J Comp Neurol 180: 545–80

    PubMed  CAS  Google Scholar 

  172. Phillipson OT, Griffiths AC (1985) The topographic order of inputs to nucleus accumbens in the rat. Neuroscience 16: 275–96

    PubMed  CAS  Google Scholar 

  173. Heimer L, Zahm DS, Churchill L, et al. (1991) Specificity in the projection patterns of accumbal core and shell in the rat. Neuroscience 41: 89–125

    PubMed  CAS  Google Scholar 

  174. Mogenson GJ, Takigawa M, Robertson A, et al. (1979) Self-stimulation of the nucleus accumbens and ventral tegmental area of Tsai attenuated by microinjections of spiroperidol into the nucleus accumbens. Brain Res 171: 247–59

    PubMed  CAS  Google Scholar 

  175. Prado-Alcala R, Wise RA (1984) Brain stimulation reward and dopamine terminal fields. I. Caudate-putamen, nucleus accumbens and amygdala. Brain Res 297: 265–73

    PubMed  CAS  Google Scholar 

  176. Rolls ET, Burton MJ, Mora F (1980) Neurophysiological analysis of brain-stimulation reward in the monkey. Brain Res 194: 339–57

    PubMed  CAS  Google Scholar 

  177. Zacharko RM, Kasian M, Irwin J, et al. (1990) Behavioral characterization of intracranial self-stimulation from mesolimbic, mesocortical, nigrostriatal, hypothalamic and extra-hypothalamic sites in the non-inbred CD-1 mouse strain. Behav Brain Res 36: 251–81

    PubMed  CAS  Google Scholar 

  178. Van Ree JM, Otte AP (1980) Effects of (Des-Tyrl)-gamma-endorphin and alpha-endorphin as compared to haloperidol and amphetamine on nucleus accumbens self-stimulation. Neuropharmacology 19: 429–34

    PubMed  Google Scholar 

  179. West TE, Wise RA (1988) Effects of naltrexone on nucleus accumbens, lateral hypothalamic and ventral tegmental self-stimulation rate-frequency functions. Brain Res 462: 126–33

    PubMed  CAS  Google Scholar 

  180. Costentin J (2006) Halte au cannabis. Odile Jacob, Paris

    Google Scholar 

  181. Pontieri FE, Tanda G, Di Chiara G (1995) Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the “shell” as compared with the “core” of the rat nucleus accumbens. Proc Natl Acad Sci USA 92: 12304–8

    PubMed  CAS  Google Scholar 

  182. Di Chiara G, Tanda G, Bassareo V, et al. (1999) Drug addiction as a disorder of associative learning. Role of nucleus accumbens shell/extended amygdala dopamine. Ann N Y Acad Sci 877: 461–85

    PubMed  Google Scholar 

  183. Costa VD, Lang PJ, Sabatinelli D, et al. (2010) Emotional imagery: assessing pleasure and arousal in the brain’s reward circuitry. Hum Brain Mapp 31: 1446–57

    PubMed  Google Scholar 

  184. Sabatinelli D, Bradley MM, Lang PJ, et al. (2007) Pleasure rather than salience activates human nucleus accumbens and medial prefrontal cortex. J Neurophysiol 98: 1374–9

    PubMed  Google Scholar 

  185. Schlaepfer TE, Cohen MX, Frick C, et al. (2008) Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 33: 368–77

    PubMed  Google Scholar 

  186. Bewernick BH, Hurlemann R, Matusch A, et al. (2010) Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry 67: 110–6

    PubMed  Google Scholar 

  187. Abosch A, Cosgrove GR (2008) Biological basis for the surgical treatment of depression. Neurosurg Focus 25: E2

    PubMed  Google Scholar 

  188. Irle E, Exner C, Thielen K, et al. (1998) Obsessive-compulsive disorder and ventromedial frontal lesions: clinical and neuropsychological findings. Am J Psychiatry 155: 255–63

    PubMed  CAS  Google Scholar 

  189. Feil J, Zangen A (2010) Brain stimulation in the study and treatment of addiction. Neurosci Biobehav Rev 34: 559–74

    PubMed  Google Scholar 

  190. Carter A, Hall W (2011) Proposals to trial deep brain stimulation to treat addiction are premature. Addiction 106: 235–7

    PubMed  Google Scholar 

  191. Hall W, Carter A (2011) Is deep brain stimulation a prospective “cure” for addiction? F1000 Med Rep 3: 4

    PubMed  Google Scholar 

  192. Kuhn J, Moller M, Muller U, et al. (2011) Deep brain stimulation for the treatment of addiction. Addiction 106: 1536–7

    PubMed  Google Scholar 

  193. Luigjes J, Van Den Brink W, Feenstra M, et al. (2011) Deep brain stimulation in addiction: a review of potential brain targets. Mol Psychiatry 17: 572–83

    PubMed  Google Scholar 

  194. Li N, Wang J, Wang XL, et al. (2012) Nucleus Accumbens Surgery for Addiction. World Neurosurg: Oct 6

    Google Scholar 

  195. Bard P (1928) A diencephalic mechanism for the expression of rage with special reference to the central nervous system. Am J Physiol 84: 490–513

    Google Scholar 

  196. Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20: 11–21

    PubMed  CAS  Google Scholar 

  197. Dalgleish T (2004) The emotional brain. Nat Rev Neurosci 5: 583–9

    PubMed  Google Scholar 

  198. Kanba S (2004) [Brain science in emotional memory: role of the hippocampus]. Fukuoka Igaku Zasshi 95: 281–5

    PubMed  CAS  Google Scholar 

  199. Lestienne R (2009) La bonne influence de nos émotions. La recherche

    Google Scholar 

  200. Lisman JE, Grace AA (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46: 703–13

    PubMed  CAS  Google Scholar 

  201. Mcgaugh JL (2004) The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci 27: 1–28

    PubMed  CAS  Google Scholar 

  202. Bremner JD (2006) Traumatic stress: effects on the brain. Dialogues Clin Neurosci 8: 445–61

    PubMed  Google Scholar 

  203. Pare D, Quirk GJ, Ledoux JE (2004) New vistas on amygdala networks in conditioned fear. J Neurophysiol 92: 1–9

    PubMed  Google Scholar 

  204. Jeannerod M (2002) Le cerveau intime. Odile Jacob, Paris

    Google Scholar 

  205. Darwin C (1872) The expression of the emotions in man and animals. J. Murray, London

    Google Scholar 

  206. MacLean PD, Kral VA (1973) A triune concept of the brain and behaviour. Published for the Ontario Mental Health Foundation by University of Toronto Press

    Google Scholar 

  207. MacLean P (1952) Some psychiatric implications of physiological studies on frontotemporal portion of limbic system Electroencephalogr Clin Neurophysiol 4: 407–18

    PubMed  CAS  Google Scholar 

  208. Jouvent R (2009) Le cerveau magicien de la réalité au plaisir psychique. Odile Jacob, Paris

    Google Scholar 

  209. Kopell BH, Greenberg BD (2008) Anatomy and physiology of the basal ganglia: implications for DBS in psychiatry. Neurosci Biobehav Rev 32: 408–22

    PubMed  Google Scholar 

  210. Krack P, Hariz MI, Baunez C, et al. (2010) Deep brain stimulation: from neurology to psychiatry? Trends Neurosci 33: 474–84

    PubMed  CAS  Google Scholar 

  211. Haber SN, Fudge JL, Mcfarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20: 2369–82

    PubMed  CAS  Google Scholar 

  212. Levesque J, Eugene F, Joanette Y, et al. (2003) Neural circuitry underlying voluntary suppression of sadness. Biol Psychiatry 53: 502–10

    PubMed  Google Scholar 

  213. Alexander GE, Crutcher MD, Delong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85: 119–46

    PubMed  CAS  Google Scholar 

  214. Bunney WE, Bunney BG (2000) Evidence for a compromised dorsolateral prefrontal cortical parallel circuit in schizophrenia. Brain Res Brain Res Rev 31: 138–46

    PubMed  CAS  Google Scholar 

  215. Daffner KR, Mesulam MM, Holcomb PJ, et al. (2000) Disruption of attention to novel events after frontal lobe injury in humans. J Neurol Neurosurg Psychiatry 68: 18–24

    PubMed  CAS  Google Scholar 

  216. Mega MS, Cummings JL (1994) Frontal-subcortical circuits and neuropsychiatric disorders. J Neuropsychiatry Clin Neurosci 6: 358–70

    PubMed  CAS  Google Scholar 

  217. Duffy JD, Campbell JJ 3rd (1994) The regional prefrontal syndromes: a theoretical and clinical overview. J Neuropsychiatry Clin Neurosci 6: 379–87

    PubMed  CAS  Google Scholar 

  218. Damasio H, Damasio AR (1989) Lesion analysis in neuropsychology. Oxford University Press, New York

    Google Scholar 

  219. Magill PJ, Bolam JP, Bevan MD (2000) Relationship of activity in the subthalamic nucleus-globus pallidus network to cortical electroencephalogram. J Neurosci 20: 820–33

    PubMed  CAS  Google Scholar 

  220. Beurrier CG, Bioulac B (2002) Subthalamic nucleus: a clock inside basal ganglia?. Thalamus & Related Systems 2: 1–8

    Google Scholar 

  221. Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304: 1926–9

    PubMed  CAS  Google Scholar 

  222. Coenen VA, Schlaepfer TE, Maedler B, et al. (2011) Cross-species affective functions of the medial forebrain bundle-implications for the treatment of affective pain and depression in humans. Neurosci Biobehav Rev 35: 1971–81

    PubMed  Google Scholar 

  223. Bonnet-Brilhault FT, Petit F (2001) Données biologiques de la schizophrénie, Encycl Méd Chir, vol. 37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Paris

About this chapter

Cite this chapter

Lévêque, M. (2013). La neuroanatomie des émotions. In: Psychochirurgie. Springer, Paris. https://doi.org/10.1007/978-2-8178-0454-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0454-5_2

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0453-8

  • Online ISBN: 978-2-8178-0454-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics