Skip to main content

Approches électrophysiologique et physiologique

  • Chapter
Le cervelet
  • 765 Accesses

Résumé

Le cervelet présente schématiquement deux étages interconnectés: le cortex et les noyaux profonds. Le cortex peut se concevoir comme une juxtaposition quasi cristalline de microcircuits centrés sur les cellules de Purkinje, à double entrée (fibres grimpantes et parallèles) et à sortie unique (l’axone GABAergique des cellules de Purkinje vers les noyaux profonds), auquels s’associent des voies locales inhibitrices par les interneurones. Les neurones de projection des noyaux cérébelleux profonds intègrent, quant à eux, les signaux issus de collatérales des mêmes fibres grimpantes et moussues, des axones des cellules de Purkinje, et des interneurones locaux sont seuls à l’origine des efférences cérébelleuses et des interneurones. Les cellules de Purkinje et les neurones cérébelleux associés, lesquels reçoivent les mêmes afférences, participent à un même module fonctionnel appelé microzone/microcomplexe (voir fig. 13 du chapitre 2). Ces modules formeraient des réseaux associatifs capables d’apprentissage supervisé notamment sous l’action des fibres grimpantes qui modulent l’efficacité synaptique entre fibres parallèles et dendrites des cellules de Purkinje.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Llinas R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol (Lond) 305: 171–95

    CAS  Google Scholar 

  2. Llinas R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol (Lond) 305: 197–213

    CAS  Google Scholar 

  3. Davie JT, Clark BA, Häusser M (2008) The origin of the complex spike in cerebellar Purkinje cells. J Neurosci 28: 7599–609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. De Zeeuw CI, Hoebeek FE, Bosman LWJ, et al. (2011) Spatiotemporal firing patterns in the cerebellum. Nature Rev Neurosci 12: 327–44

    Article  Google Scholar 

  5. Schmolensky MT, Weber JT, De Zeeuw CI, Hansel C (2002) The making of a complex spike: ionic composition and plasticity. Ann NY Acad Sci 978: 359–90

    Article  Google Scholar 

  6. Kitamura K, Kano M (2012) Dendritic calcium signalling in cerebellar Purkinje cell. Neural Netw (sous presse)

    Google Scholar 

  7. Engbers JDT, Fernandez FR, Turner RW (2012) Bistability in Purkinje neurons: Ups and downs in cerebellar research. Neural Netw (sous presse)

    Google Scholar 

  8. Rokni D, Tal Z, Yarom Y (2009) Regularity, variability and bi-stability in the activity of cerebellar Purkinje cells. Frontiers Cell Neurosci 3: 1–9

    Article  Google Scholar 

  9. Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81: 1143–95

    CAS  PubMed  Google Scholar 

  10. Gao Z, Beugen BJ, De Zeuw CI (2012) Distributed synergistic plasticity and cerebellar learning. Nature Rev Neurosci 13: 1–17

    Article  CAS  Google Scholar 

  11. Mishina M, Uemura T, Yasumura M, Yoshida T (2012) Molecular mechanism of parallel fiber-Purkinje cell synapse formation. Frontiers Neural Circuit 6-article 90: 1–9

    Google Scholar 

  12. D’Angelo E (2011) The cerebellar granule cell. (http://www-3.unipv.it/dsffcm/pagine/labs/dangelo/pdf/THE%20CEREBELLAR%20GRANULE%20CELL.pdf)

    Google Scholar 

  13. D’Angelo E (2008) The critical role of Golgi cells in regulating spatio-temporal integration and plasticity at the cerebellum input stage. Front Neurosci 2: 3546

    Google Scholar 

  14. Galliano E, Mazzarello P, D’Angelo E (2010) Discovery and rediscoveries of Golgi cells. J Physiol (Lond) 588: 3639–55

    Article  CAS  Google Scholar 

  15. Llinas R, Walton KR (1990) Cerebellum. In: Sheperd GM (ed) The synaptic organization of the brain, Oxford University Press, p 214

    Google Scholar 

  16. Jacobson GA, Rokni D, Yarom Y (2008) A model of the olivo-cerebellar system as a temporal pattern generator. TINS 31: 617–25

    CAS  PubMed  Google Scholar 

  17. Mathy A, Ho S, Davie JT, et al. (2009) Encoding of oscillations by axonal bursts in inferior olive neurons. Neuron 62: 388–99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Bazzigaluppi P, De Gruijl JR, van der Giessen RS, et al. (2012) Olivary subthreshold oscillations and burst activity revisited. Front Neur Circuits 6–91: 1–13

    Google Scholar 

  19. Zheng N, Raman IM (2010) Synaptic inhibition, excitation, and plasticity in neurons of the cerebellar nuclei. Cerebellum 9: 56–66

    Article  PubMed Central  PubMed  Google Scholar 

  20. Uusisaari M, De Schutter E (2011) The mysterious microcircuitery of the cerebellar nuclei. J Physiol 589: 3441–57

    Article  CAS  PubMed  Google Scholar 

  21. Thach WT, Perry JG, Kane SA, Goodkin HP (1993) Cerebellar nuclei, rapid alternating movements, motor somatotopy, muscle synergy. Revue Neurol (Paris) 149: 607–28

    CAS  Google Scholar 

  22. Rispal-Padel L, Circata F, Pons C (1982) Cerebellar nuclear topography and synergestic movements in alert baboon (Papio Papio). Exp Brain Res 74: 365–80

    Google Scholar 

  23. MacKay WA (1988) Unit activity in the cerebellar nuclei related to arm reaching movements. Brain Res 442: 240–54

    Article  CAS  PubMed  Google Scholar 

  24. Fortier PA, Smith AM, Kalaska JF (1993) Comparison of cerebellar and motor cortex activity during reaching: directional tuning and response variability. J Neurophysiol 69: 1136–49

    CAS  PubMed  Google Scholar 

  25. Thach WT, Perry JG, Schieber MH (1982) Cerebellar ouput: body maps and muscle spindles. In: Palay SL and Chan-Palay V (eds), Cerebellum-New Vistas. Springer-Verlag, Berlin, p 440

    Chapter  Google Scholar 

  26. Chapman CE, Spidialeri G, Lamarre Y (1986) Activity of dentate neurons during arm movements triggered by visual, auditory and somesthesic stimuli in monkey. J Neurophysiol 55: 203–26

    CAS  PubMed  Google Scholar 

  27. Butler EG, Horne MK, Rawson JA (1992) Sensory characteristics of monkey thalamic and motor cortex neurones. J Physiol (Lond) 445: 1–24

    CAS  Google Scholar 

  28. Butler EG, Horne MK, Hawkins NJ (1992) The activity of monkey thalamic and motor cortical neurones in skilled, ballistic movement. J Physiol (Lond) 445: 25–48

    CAS  Google Scholar 

  29. Butler EG, Horne MK, Rawson JA (1992) A frequency analysis of neuronal activity in monkey thalamus, motor cortex and electromyograms in wrist oscillations. J Physiol (Lond) 445: 49–68

    CAS  Google Scholar 

  30. Spidialeri G, Busby L, Lamarre Y (1983) Fast ballistic arm movements triggered by visual, auditory and somesthesic stimuli in the monkey. II. Effects of unilateral dentate lesion on discharge of precentral cortical neurons and reaction time. J Neurophysiol 50: 1359–79

    Google Scholar 

  31. MacCormick DA, Steinmetz JE, Thompson RF (1984) Cerebellum: essential involvement in the classically conditioned eyelid response. Science 223: 296–9

    Article  Google Scholar 

  32. Medina JF, Nores WL, Phyama T, Mauk MD (2000) Mechanism of cerebellar learning suggested by eyelid conditioning. Curr Opin Neurobiol 10: 717–24

    Article  CAS  PubMed  Google Scholar 

  33. Gerwig M, Kolb FP, Timman D (2007) The involvement of the human cerebellum in eyeblink conditioning. Cerebellum 6: 38–57

    Article  CAS  PubMed  Google Scholar 

  34. Kawato M, Furukawa K, Susuki R (1987) A hierarchical neural network model for control and learning of voluntary movements. Biol Cybern 57: 169–85

    Article  CAS  PubMed  Google Scholar 

  35. Imamizu H, Kawato M (2012) Cerebellar internal models: implications for the dexterous use of tools. Cerebellum 11: 325–35

    Article  CAS  PubMed  Google Scholar 

  36. Kawato (1999) Internal models for motor control and trajectoty palnning. Curr Opin Neurobiol 9: 718–27

    Article  CAS  PubMed  Google Scholar 

  37. Ito M (2008) Control of mental activities by internal models in the cerebellum. Nature Neurosci 9: 304–13

    Article  CAS  Google Scholar 

Références

  1. Manto M (2010) Cerebellar Disorders. A Practical Approach to Diagnosis and Management. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  2. Manto M, Godaux E, Jacquy J (1994) Cerebellar hypermetria is larger when the inertial load is artificially increased. Ann Neurol. 35: 45–52

    Article  CAS  PubMed  Google Scholar 

  3. Vilis T, Hore J (1980) Central neuronal mechanisms contributing to cerebellar tremor produced by limb perturbations. J Neurophysio. 143: 279–291

    Google Scholar 

  4. Bastian AJ, Morton S (2007) Mechanisms of cerebellar gait ataxia. Cerebellum. 6: 79–86

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Manto, M., Habas, C. (2013). Approches électrophysiologique et physiologique. In: Le cervelet. Springer, Paris. https://doi.org/10.1007/978-2-8178-0447-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0447-7_3

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0446-0

  • Online ISBN: 978-2-8178-0447-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics