Skip to main content

Susceptibilité individuelle et toxicité de la radiothérapie

  • Chapter
  • 426 Accesses

Résumé

En 1901, six ans après la découverte des rayons X par Wilhelm Röntgen, Henri Becquerel et Pierre Curie publient une note officielle à l’Académie des sciences sur l’action physiologique des rayons du radium [1]. En reproduisant l’expérience de Friedrich Giesel, Pierre Curie décrit les diverses rougeurs, brûlures et plaies qu’a provoquées l’exposition, durant une dizaine d’heures, de chlorure de baryum radifère sur son avant-bras. Les symptômes décrits sont les mêmes que ceux de Marie Curie et d’Henri Becquerel, lorsque ces derniers transportent dans une poche de leur gilet un petit tube métallique scellé avec quelques centigrammes de cette même matière active. Ces diverses observations conduisent rapidement à la conclusion de l’existence d’un effet biologique des rayonnements ionisants sur les tissus.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Becquerel H, Curie P (1901) Action physiologique des rayons du radium. CR Acad Sci Paris 132: 1289

    CAS  Google Scholar 

  2. Burnet NG, Nyman J, Turesson I, et al. (1992) Prediction of normal-tissue tolerance to radiotherapy from in vitro cellular radiation sensitivity. Lancet 339(8809): 1570–1

    Article  CAS  PubMed  Google Scholar 

  3. Johansen J, Bentzen SM, Overgaard J, Overgaard M (1994) Evidence for a positive correlation between in vitro radiosensitivity of normal human skin fibroblasts and the occurrence of subcutaneous fibrosis after radiotherapy. Int J Radiat Biol 66(4): 407–12

    Article  CAS  PubMed  Google Scholar 

  4. Geara FB, Peters LJ, Ang KK, et al. (1993) Prospective comparison of in vitro normal cell radiosensitivity and normal tissue reactions in radiotherapy patients. Int J Radiat Oncol Biol Phys 27(5): 1173–9

    Article  CAS  PubMed  Google Scholar 

  5. Johansen J, Bentzen SM, Overgaard J, Overgaard M (1996) Relationship between the in vitro radiosensitivity of skin fibroblasts and the expression of subcutaneous fibrosis, telangiectasia, and skin erythema after radiotherapy. Radiother Oncol 40(2): 101–9

    Article  CAS  PubMed  Google Scholar 

  6. Russell NS, Grummels A, Hart AA, et al. (1998) Low predictive value of intrinsic fibroblast radiosensitivity for fibrosis development following radiotherapy for breast cancer. Int J Radiat Biol 73(6): 661–70

    Article  CAS  PubMed  Google Scholar 

  7. Peacock J, Ashton A, Bliss J, et al. (2000) Cellular radiosensitivity and complication risk after curative radiotherapy. Radiother Oncol 55(2): 173–8

    Article  CAS  PubMed  Google Scholar 

  8. Bentzen SM (2008) From cellular to high-throughput predictive assays in radiation oncology: challenges and opportunities. Semin Radiat Oncol 18(2): 75–88

    Article  PubMed  Google Scholar 

  9. Oppitz U, Denzinger S, Nachtrab U, et al. (1999) Radiation-induced comet-formation in human skin fibroblasts from radiotherapy patients with different normal tissue reactions. Strahlenther Onkol 175(7): 341–6

    Article  CAS  PubMed  Google Scholar 

  10. Nachtrab U, Oppitz U, Flentje M, Stopper H (1998) Radiation-induced micronucleus formation in human skin fibroblasts of patients showing severe and normal tissue damage after radiotherapy. Int J Radiat Biol 73(3): 279–87

    Article  CAS  PubMed  Google Scholar 

  11. West CM, Elyan SA, Berry P, et al. (1995) A comparison of the radiosensitivity of lymphocytes from normal donors, cancer patients, individuals with ataxia-telangiectasia (A-T) and A-T heterozygotes. Int J Radiat Biol 68(2): 197–203

    Article  CAS  PubMed  Google Scholar 

  12. Jones LA, Scott D, Cowan R, Roberts SA (1995) Abnormal radiosensitivity of lymphocytes from breast cancer patients with excessive normal tissue damage after radiotherapy: chromosome aberrations after low dose-rate irradiation. Int J Radiat Biol 67(5): 519–28

    Article  CAS  PubMed  Google Scholar 

  13. Floyd DN, Cassoni AM (1994) Intrinsic radiosensitivity of adult and cord blood lymphocytes as determined by the micronucleus assay. Eur J Cancer 30A(5): 615–20

    Article  CAS  PubMed  Google Scholar 

  14. Huber R, Braselmann H, Bauchinger M (1992) Intra- and inter-individual variation of background and radiation-induced micronucleus frequencies in human lymphocytes. Int J Radiat Biol 61(5): 655–61

    Article  CAS  PubMed  Google Scholar 

  15. Ozsahin M, Ozsahin H, Shi Y, et al. (1997) Rapid assay of intrinsic radiosensitivity based on apoptosis in human CD4 and CD8 T-lymphocytes. Int J Radiat Oncol Biol Phys 38(2): 429–40

    Article  CAS  PubMed  Google Scholar 

  16. Ozsahin M, Crompton NE, Gourgou S, et al. (2005) CD4 and CD8 T-lymphocyte apoptosis can predict radiation-induced late toxicity: a prospective study in 399 patients. Clin Cancer Res 11(20): 7426–33

    Article  CAS  PubMed  Google Scholar 

  17. Azria D, Belkacemi Y, Romieu G, et al. (2010) Concurrent or sequential adjuvant letrozole and radiotherapy after conservative surgery for early-stage breast cancer (CO-HO-RT): a phase 2 randomised trial. Lancet Oncol 11(3): 258–65

    Article  CAS  PubMed  Google Scholar 

  18. Pollard JM, Gatti RA (2009) Clinical radiation sensitivity with DNA repair disorders: an overview. Int J Radiat Oncol Biol Phys 74(5): 1323–31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Andreassen CN, Alsner J (2009) Genetic variants and normal tissue toxicity after radiotherapy: a systematic review. Radiother Oncol 92(3): 299–309

    Article  CAS  PubMed  Google Scholar 

  20. Barnett GC, Coles CE, Elliott RM, et al. (2012) Independent validation of genes and polymorphisms reported to be associated with radiation toxicity: a prospective analysis study. Lancet Oncol 13(1): 65–77

    Article  CAS  PubMed  Google Scholar 

  21. Barnett GC, Elliott RM, Alsner J, et al. (2012) Individual patient data meta-analysis shows no association between the SNP rs1800469 in TGFB and late radiotherapy toxicity. Radiother Oncol 105(3): 289–95

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Voets AM, Oberije C, Struijk RB, et al. (2012) No association between TGF-beta1 polymorphisms and radiation-induced lung toxicity in a European cohort of lung cancer patients. Radiother Oncol 105(3): 296–8

    Article  CAS  PubMed  Google Scholar 

  23. Frayling TM, Timpson NJ, Weedon MN, et al. (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316(5826): 889–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Liu YJ, Liu XG, Wang L, et al. (2008) Genome-wide association scans identified CTNNBL1 as a novel gene for obesity. Hum Mol Genet 17(12): 1803–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Saxena R, Voight BF, Lyssenko V, et al. (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316(5829): 1331–6

    Article  CAS  PubMed  Google Scholar 

  26. Newton-Cheh C, Guo CY, Wang TJ, et al. (2007) Genome-wide association study of electrocardiographic and heart rate variability traits: the Framingham Heart Study. BMC Med Genet 8 Suppl 1: S7

    Article  PubMed Central  PubMed  Google Scholar 

  27. Kerns SL, Ostrer H, Stock R, et al. (2010) Genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated with the development of erectile dysfunction in African-American men after radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 78(5): 1292–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Best T, Li D, Skol AD, et al. (2011) Variants at 6q21 implicate PRDM1 in the etiology of therapy-induced second malignancies after Hodgkin’s lymphoma. Nat Med 17(8): 941–3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. West C, Rosenstein BS, Alsner J, et al. (2010) Establishment of a Radiogenomics Consortium. Int J Radiat Oncol Biol Phys 76(5): 1295–6

    Article  PubMed  Google Scholar 

  30. Hummerich J, Werle-Schneider G, Popanda O, et al. (2006) Constitutive mRNA expression of DNA repair-related genes as a biomarker for clinical radio-resistance: A pilot study in prostate cancer patients receiving radiotherapy. Int J Radiat Biol 82(8): 593–604

    Article  PubMed  Google Scholar 

  31. Wiebalk K, Schmezer P, Kropp S, et al. (2007) In vitro radiation-induced expression of XPC mRNA as a possible biomarker for developing adverse reactions during radiotherapy. Int J Cancer 121(10): 2340–5

    CAS  PubMed  Google Scholar 

  32. Mayer C, Popanda O, Greve B, et al. (2011) A radiation-induced gene expression signature as a tool to predict acute radiotherapy-induced adverse side effects. Cancer Lett 302(1): 20–8

    Article  CAS  PubMed  Google Scholar 

  33. Wagner-Ecker M, Schwager C, Wirkner U, et al. (2010) MicroRNA expression after ionizing radiation in human endothelial cells. Radiat Oncol 5: 25

    Google Scholar 

  34. Chaudhry MA, Kreger B, Omaruddin RA (2010) Transcriptional modulation of micro-RNA in human cells differing in radiation sensitivity. Int J Radiat Biol 86(7): 569–83

    Article  CAS  PubMed  Google Scholar 

  35. Kato M, Paranjape T, Muller RU, et al. (2009) The mir-34 microRNA is required for the DNA damage response in vivo in C. elegans and in vitro in human breast cancer cells. Oncogene 28(25): 2419–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Lu X, de la Pena L, Barker C, et al. (2006) Radiation-induced changes in gene expression involve recruitment of existing messenger RNAs to and away from polysomes. Cancer Res 66(2): 1052–61

    Article  PubMed  Google Scholar 

  37. Zhao L, Sheldon K, Chen M, et al. (2008) The predictive role of plasma TGF-beta1 during radiation therapy for radiation-induced lung toxicity deserves further study in patients with non-small cell lung cancer. Lung Cancer 59(2): 232–9

    Article  PubMed  Google Scholar 

  38. Zhao L, Wang L, Ji W, et al. (2009) Elevation of plasma TGF-beta1 during radiation therapy predicts radiation-induced lung toxicity in patients with non-small-cell lung cancer: a combined analysis from Beijing and Michigan. Int J Radiat Oncol Biol Phys 74(5): 1385–90

    Article  CAS  PubMed  Google Scholar 

  39. Evans ES, Kocak Z, Zhou SM, et al. (2006) Does transforming growth factor-beta1 predict for radiation-induced pneumonitis in patients treated for lung cancer? Cytokine 35(3–4): 186–92

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Anscher MS, Kong FM, Andrews K, et al. (1998) Plasma transforming growth factor beta1 as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys 41(5): 1029–35

    Article  CAS  PubMed  Google Scholar 

  41. Fu XL, Huang H, Bentel G, et al. (2001) Predicting the risk of symptomatic radiation-induced lung injury using both the physical and biologic parameters V(30) and transforming growth factor beta. Int J Radiat Oncol Biol Phys 50(4): 899–908

    Article  CAS  PubMed  Google Scholar 

  42. Li C, Wilson PB, Levine E, et al. (1999) TGF-beta1 levels in pre-treatment plasma identify breast cancer patients at risk of developing post-radiotherapy fibrosis. Int J Cancer 84(2): 155–9

    CAS  PubMed  Google Scholar 

  43. Chen Y, Hyrien O, Williams J, et al. (2005) Interleukin (IL)-1A and IL-6: applications to the predictive diagnostic testing of radiation pneumonitis. Int J Radiat Oncol Biol Phys 62(1): 260–6

    Article  CAS  PubMed  Google Scholar 

  44. Arpin D, Perol D, Blay JY, et al. (2005) Early variations of circulating interleukin-6 and interleukin-10 levels during thoracic radiotherapy are predictive for radiation pneumonitis. J Clin Oncol 23(34): 8748–56

    Article  CAS  PubMed  Google Scholar 

  45. Goto K, Kodama T, Sekine I, et al. (2001) Serum levels of KL-6 are useful biomarkers for severe radiation pneumonitis. Lung Cancer 34(1): 141–8

    Article  CAS  PubMed  Google Scholar 

  46. Hara R, Itami J, Komiyama T, et al. (2004) Serum levels of KL-6 for predicting the occurrence of radiation pneumonitis after stereotactic radiotherapy for lung tumors. Chest 125(1): 340–4

    Article  PubMed  Google Scholar 

  47. Sasaki R, Soejima T, Matsumoto A, et al. (2001) Clinical significance of serum pulmonary surfactant proteins a and d for the early detection of radiation pneumonitis. Int J Radiat Oncol Biol Phys 50(2): 301–7

    Article  CAS  PubMed  Google Scholar 

  48. Rubin P, McDonald S, Maasilta P, et al. (1989) Serum markers for prediction of pulmonary radiation syndromes. Part I: Surfactant apoprotein. Int J Radiat Oncol Biol Phys 17(3): 553–8

    Article  CAS  PubMed  Google Scholar 

  49. Hart J P, Broadwater G, Rabbani Z, et al. (2005) Cytokine profiling for prediction of symptomatic radiation-induced lung injury. Int J Radiat Oncol Biol Phys 63(5): 1448–54

    Article  CAS  PubMed  Google Scholar 

  50. Lutgens LC, Deutz N, Granzier-Peeters M, et al. (2004) Plasma citrulline concentration: a surrogate end point for radiation-induced mucosal atrophy of the small bowel. A feasibility study in 23 patients. Int J Radiat Oncol Biol Phys 60(1): 275–85

    Article  CAS  PubMed  Google Scholar 

  51. Onal C, Kotek A, Unal B, et al. (2011) Plasma citrulline levels predict intestinal toxicity in patients treated with pelvic radiotherapy. Acta Oncol 50(8): 1167–74

    Article  CAS  PubMed  Google Scholar 

  52. Skiold S, Naslund I, Brehwens K, et al. (2013) Radiation-induced stress response in peripheral blood of breast cancer patients differs between patients with severe acute skin reactions and patients with no side effects to radiotherapy. Mutat Res 756(1–2): 152–7

    Article  PubMed  Google Scholar 

  53. Menard C, Johann D, Lowenthal M, et al. (2006) Discovering clinical biomarkers of ionizing radiation exposure with serum proteomic analysis. Cancer Res 66(3): 1844–50

    Article  CAS  PubMed  Google Scholar 

  54. Cai XW, Shedden K, Ao X, et al. (2010) Plasma proteomic analysis may identify new markers for radiation-induced lung toxicity in patients with non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 77(3): 867–76

    Article  CAS  PubMed  Google Scholar 

  55. Cai XW, Shedden KA, Yuan SH, et al. (2011) Baseline plasma proteomic analysis to identify biomarkers that predict radiation-induced lung toxicity in patients receiving radiation for non-small cell lung cancer. J Thorac Oncol 6(6): 1073–8

    Article  PubMed  Google Scholar 

  56. Oh JH, Craft JM, Townsend R, et al. (2011) A bioinformatics approach for biomarker identification in radiation-induced lung inflammation from limited proteomics data. J Proteome Res 10(3): 1406–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Azria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Paris

About this chapter

Cite this chapter

Lacombe, J., Riou, O., Solassol, J., Mangé, A., Ozsahin, M., Azria, D. (2014). Susceptibilité individuelle et toxicité de la radiothérapie. In: Merlin, JL. (eds) Les biomarqueurs moléculaires en oncologie. Springer, Paris. https://doi.org/10.1007/978-2-8178-0445-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0445-3_9

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0444-6

  • Online ISBN: 978-2-8178-0445-3

Publish with us

Policies and ethics