Skip to main content

Limites de la tomoscintigraphie myocardique (TSM)

  • Conference paper
Imagerie en coupes du cœur et des vaisseaux
  • 672 Accesses

Résumé

Décrire les limites d’une technique, quelle qu’elle soit, revient à en délimiter le périmètre d’action, et par là à fournir une image en négatif de ses avantages. De ce point de vue, l’imagerie scintigraphique étant parvenue à l’âge de la maturité (les premières utilisations cliniques avec le thallium-201 datent des années soixante-dix), le travail pourrait s’en trouver simplifié. Cependant, les enjeux de la médecine moderne évoluent et fixent de nouveaux défis. Tout d’abord, le contexte médical a beaucoup changé. L’échographie, l’angioscanner et 1TRM surtout offrent des possibilités d’analyse de la perfusion myocardique qui peuvent être associées à des études précises de la fonction contractile. L’exploration anatomique du réseau coronaire est actuellement possible en angioscanner, si bien qu’on peut s’interroger sur la place actuelle et à venir de la TSM. Enfin, le confort (imagerie rapide) et la sécurité du patient (dosimétrie) nous contraignent à la fois à proposer des techniques d’imagerie rapide et à minimiser la dosimétrie du patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Marie PY, Mercennier C, Danchin N, et al. (2003) Residual exercise SPECT ischemia on treatment is a main determinant of outcome in patients with coronary artery disease treated medically at long-term with beta-blockers. J Nucl Cardiol 10: 361–8

    Article  PubMed  Google Scholar 

  2. Marie PY, Danchin N, Branly F, et al. (1999) Effects of medical therapy on outcome assessment using exercise thallium-201 single photon emission computed tomography imaging: evidence of a protective effect of beta-blocking antianginal medications. J Am Coll Cardiol 34:113–21

    Article  PubMed  CAS  Google Scholar 

  3. Hachamovitch R, Berman DS, Shaw LJ, et al. (1998) Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation 97: 535–43

    Article  PubMed  CAS  Google Scholar 

  4. Metz LD, Beattie M, Horn R, et al. (2007) The prognostic value of normal exercise myocardial perfusion imaging and exercise echocardiography: a meta-analysis. J Am Coll Cardiol 49: 227–37

    Article  PubMed  Google Scholar 

  5. Shaw LJ, Berman DS, Maron DJ, et al. (2008) Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation 117: 1283–91

    Article  PubMed  Google Scholar 

  6. van Werkhoven JM, Schuijf JD, Gaemperli O, et al. (2009) Prognostic value of multislice computed tomography and gated single-photon emission computed tomography in patients with suspected coronary artery disease. J Am Coll Cardiol 53: 623–32

    Article  PubMed  Google Scholar 

  7. Aboul-Enein F, Kar S, Hayes SW, et al. (2004) Influence of angiographic collateral circulation on myocardial perfusion in patients with chronic total occlusion of a single coronary artery and no prior myocardial infarction. J Nucl Med 45: 950–5

    PubMed  Google Scholar 

  8. 8. Hess OM, Bortone A, Eid K, et al. (1989) Coronary vasomotor tone during static and dynamic exercise. Eur Heart J 10Suppl F: 105–10

    Article  PubMed  Google Scholar 

  9. David N, Marie PY, Angioi M, et al. (2000) Dipyridamole and exercise SPET provide different estimates of myocardial ischaemic areas: role of the severity of coronary stenoses and of the increase in heart rate during exercise. Eur J Nucl Med 27: 788–99

    Article  PubMed  CAS  Google Scholar 

  10. Yoon AJ, Melduni RM, Duncan SA, et al. (2009) The effect of beta-blockers on the diagnostic accuracy of vasodilator pharmacologic SPECT myocardial perfusion imaging. J Nucl Cardiol 16: 358–67

    Article  PubMed  Google Scholar 

  11. Djaballah W, Muller MA, Angioi M, et al. (2007) Nitrate-enhanced gated SPECT in patients with primary angioplasty for acute myocardial infarction: evidence of a reversible and nitrate-sensitive impairment of myocardial perfusion. Eur J Nucl Med Mol Imaging 34:1981–90

    Article  PubMed  Google Scholar 

  12. Go V, Bhatt MR, Hendel RC (2004) The diagnostic and prognostic value of ECG-gated SPECT myocardial perfusion imaging. J Nucl Med 45: 912–21

    PubMed  Google Scholar 

  13. Shaw LJ, Iskandrian AE (2004) Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol 11: 171–85

    Article  PubMed  Google Scholar 

  14. Manrique A, Faraggi M, Vera P, et al. (1999) 201T1 and 99mTc-MIBI gated SPECT in patients with large perfusion defects and left ventricular dysfunction: comparison with equilibrium radionuclide angiography. J Nucl Med 40: 805–9

    PubMed  CAS  Google Scholar 

  15. Manrique A, Hitzel A, Brasse D, Vera P (2005) Effect of perfusion pattern and imaging sequence on gated perfusion SPECT evaluation of myocardial stunning. J Nucl Med 46: 176–83

    PubMed  Google Scholar 

  16. 16. Trimble MA, Borges-Neto S, Velazquez EJ, et al. (2008) Emerging role of myocardial perfusion imaging to evaluate patients for cardiac resynchronization therapy. Am J Cardiol 102:211–7

    Article  PubMed  Google Scholar 

  17. Boogers MM, Van Kriekinge SD, Henneman MM, et al. (2009) Quantitative gated SPECT-derived phase analysis on gated myocardial perfusion SPECT detects left ventricular dyssynchrony and predicts response to cardiac resynchronization therapy. J Nucl Med 50: 718–25

    Article  PubMed  Google Scholar 

  18. Einstein AJ, Moser KW, Thompson RC, et al. (2007) Radiation dose to patients from cardiac diagnostic imaging. Circulation 116: 1290–305

    Article  PubMed  Google Scholar 

  19. Lindner O, Burchert W, Bengel FM, et al. (2011) Myocardial perfusion scintigraphy in Germany in 2009: utilization and state of the practice. Eur J Nucl Med Mol Imaging 38:1485–92

    Article  PubMed  Google Scholar 

  20. Manrique A, Marie PY (2003) [Recommendations for the performance and interpretation of myocardial perfusion tomoscintigraphy]. Arch Mal Cœur Vaiss 96: 695–711

    PubMed  CAS  Google Scholar 

  21. Schillaci O, Danieli R (2010) Dedicated cardiac cameras: a new option for nuclear myocardial perfusion imaging. Eur J Nucl Med Mol Imaging 37: 1706–9

    Article  PubMed  Google Scholar 

  22. Gimelli A, Bottai M, Giorgetti A, et al. (2011) Comparison between ultrafast and standard single-photon emission CT in patients with coronary artery disease: a pilot study. Circ Cardiovasc Imaging 4: 51–8

    Article  PubMed  Google Scholar 

  23. Sharir T, Slomka PJ, Hayes SW, et al. (2010) Multicenter trial of high-speed versus conventional single-photon emission computed tomography imaging: quantitative results of myocardial perfusion and left ventricular function. J Am Coll Cardiol 55: 1965–74

    Article  PubMed  Google Scholar 

  24. Gimelli A, Bottai M, Genovesi D, et al. (2012) High diagnostic accuracy of low-dose gated-SPECT with solid-state ultrafast detectors: preliminary clinical results. Eur J Nucl Med Mol Imaging 39: 83–90

    Article  PubMed  CAS  Google Scholar 

  25. Kacperski K, Erlandsson K, Ben-Haim S, Hutton BF (2011) Iterative deconvolution of simultaneous 99mTc and 201T1 projection data measured on a CdZnTe-based cardiac SPECT scanner. Phys Med Biol 56: 1397–414

    Article  PubMed  Google Scholar 

  26. Ben-Haim S, Kacperski K, Hain S, et al. (2010) Simultaneous dual-radionuclide myocardial perfusion imaging with a solid-state dedicated cardiac camera. Eur J Nucl Med Mol Imaging 37: 1710–21

    Article  PubMed  Google Scholar 

  27. Manrique A, Bernard M, Hitzel A, et al. (2008) Prognostic value of sympathetic innervation and cardiac asynchrony in dilated cardiomyopathy. Eur J Nucl Med Mol Imaging 35:2074–81

    Article  PubMed  Google Scholar 

  28. Jacobson AF, Senior R, Cerqueira MD, et al. (2010) Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol 55: 2212–21

    Article  PubMed  Google Scholar 

  29. 29. Bateman TM, Heller GV, McGhie AI, et al. (206) Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol 13: 24–33

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Manrique .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Paris

About this paper

Cite this paper

Manrique, A. (2013). Limites de la tomoscintigraphie myocardique (TSM). In: Boyer, L., Guéret, P. (eds) Imagerie en coupes du cœur et des vaisseaux. Springer, Paris. https://doi.org/10.1007/978-2-8178-0435-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0435-4_11

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0434-7

  • Online ISBN: 978-2-8178-0435-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics