Skip to main content

Définition biologique de l’agressivité tumorale : les signatures biologiques peuvent-elles être utilisées en pratique clinique ?

Biological definition of tumor aggressiveness: are molecular signatures ready to be used in clinical practice?

  • Conference paper
Acquis et limites en sénologie / Assets and limits in breast diseases

Résumé

Les technologies d’immunomarquage et d’analyse d’expression génomique ont permis de répartir les cancers du sein en quatre classes moléculaires. Chacune de ces classes correspond à un pronostic et à une sensibilité aux thérapies distinctes. Les deux principaux marqueurs de classification sont les récepteurs hormonaux et Her2. Ces deux marqueurs pourraient être complétés par :

  • des tests génomiques (oncotype, mammaprint, PAM50);

  • ou un immunomarquage par Ki67 pour définir des sous-classes moléculaires. Néanmoins, ces derniers tests sont l’objet de controverses et leur utilisation en pratique clinique ne fait pas consensus. Enfin, de nouvelles méthodes de classi- fication de l’agressivité tumorale apparaissent. Ainsi, une analyse du nombre de copies d’ADN et de l’instabilité génomique pourrait donner une bonne évaluation de l’agressivité tumorale. Enfin, des marqueurs liés au stroma pourraient permettre de différentier les tumeurs triples négatives et celles surexprimant Her2, en matière de pronostic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Perou CM, Sorlie T, Eisen MB et al. (2000) Molecular portraits of human breast tumours. Nature 406: 747–752

    Article  PubMed  CAS  Google Scholar 

  2. Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 360: 790–800

    Article  PubMed  CAS  Google Scholar 

  3. Paik S, Shak S, Tang G et al. (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351: 2817–2826

    Article  PubMed  CAS  Google Scholar 

  4. Paik S, Tang G, Shak S et al. (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 24: 3726–3734

    Article  PubMed  CAS  Google Scholar 

  5. Albain KS, Barlow WE, Shak S et al. (2010) Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol 11: 55–65

    Article  PubMed  CAS  Google Scholar 

  6. Engstrom PF, Bloom MG, Demetri GD et al. (2011) NCCN molecular testing white paper: effectiveness, efficiency, and reimbursement. J Natl Compr Canc Netw 9(Suppl 6): S1–16

    PubMed  Google Scholar 

  7. van’ t Veer LJ, Dai H, van de Vijver MJ et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–536

    Article  Google Scholar 

  8. Cardoso F, Van’t Veer L, Rutgers E, Loi S, Mook S, Piccart-Gebhart MJ (2008) Clinical application of the 70-gene profile: the MINDACT trial. J Clin Oncol 26: 729–735

    Article  PubMed  Google Scholar 

  9. Sotiriou C, Wirapati P, Loi S et al. (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98: 262–272

    Article  PubMed  CAS  Google Scholar 

  10. Mathieu MC, Mazouni C, Kesty NC et al. (2012) Breast Cancer Index predicts pathological complete response and eligibility for breast conserving surgery in breast cancer patients treated with neoadjuvant chemotherapy. Ann Oncol 23: 2046–2052

    Article  PubMed  CAS  Google Scholar 

  11. Parker JS, Mullins M, Cheang MC et al. (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27: 1160–1167

    Article  PubMed  Google Scholar 

  12. Filipits M, Rudas M, Jakesz R et al. (2011) A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk factors. Clin Cancer Res 17: 6012–6020

    Article  PubMed  CAS  Google Scholar 

  13. Cheang MC, Chia SK, Voduc D et al. (2009) Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 101: 736–750

    Article  PubMed  CAS  Google Scholar 

  14. Viale G, Giobbie-Hurder A, Regan MM et al. (2008) Prognostic and predictive value of centrally reviewed Ki-67 labeling index in postmenopausal women with endocrine-responsive breast cancer: results from Breast International Group Trial 1–98 comparing adjuvant tamoxifen with letrozole. J Clin Oncol 26: 5569–5575

    Article  PubMed  Google Scholar 

  15. Viale G, Regan MM, Mastropasqua MG et al. (2008) Predictive value of tumor Ki-67 expression in two randomized trials of adjuvant chemoendocrine therapy for node-negative breast cancer. J Natl Cancer Inst 100: 207–212

    Article  PubMed  CAS  Google Scholar 

  16. Bartlett JM, Munro AF, Dunn JA et al. (2010) Predictive markers of anthracycline benefit: a prospectively planned analysis of the UK National Epirubicin Adjuvant Trial (NEAT/BR9601). Lancet Oncol 11: 266–274

    Article  PubMed  CAS  Google Scholar 

  17. Yerushalmi R, Woods R, Ravdin PM, Hayes MM, Gelmon KA (2010) Ki67 in breast cancer: prognostic and predictive potential. Lancet Oncol 11: 174–183

    Article  PubMed  CAS  Google Scholar 

  18. Cuzick J, Dowsett M, Pineda S et al. (2011) Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the Genomic Health recurrence score in early breast cancer. J Clin Oncol 29: 4273–4278

    Article  PubMed  Google Scholar 

  19. Curtis C, Shah SP, Chin SF et al. (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486: 346–352

    PubMed  CAS  Google Scholar 

  20. Bianchini G, Wamoto T, Qi Y et al. (2009) Prognostic and therapeutic implications of kinase expression patterns in breast cancer. Breast Cancer Symposium: abstract 69

    Google Scholar 

  21. Rojo F, Gonzalez-Navarrete I, Bragado R et al. (2009) Mitogen-activated protein kinase phosphatase-1 in human breast cancer independently predicts prognosis and is repressed by doxorubicin. Clin Cancer Res 15: 3530–3539

    Article  PubMed  CAS  Google Scholar 

  22. Finetti P, Cervera N, Charafe-Jauffret E et al. (2008) Sixteen-kinase gene expression identifies luminal breast cancers with poor prognosis. Cancer Res 68: 767–776

    Article  PubMed  CAS  Google Scholar 

  23. Loi S, Michiels S, Lambrechts D et al. (2012) Tumor PIK3CA mutations, lymphocyte infiltration, and recurrence-free survival (RFS) in early breast cancer (BC): Results from the FinHER trial. J Clin Oncol 30

    Google Scholar 

  24. Desmedt C, Majjaj S, Kheddoumi N et al. (2012) Characterization and clinical evaluation of CD10+ stroma cells in the breast cancer microenvironment. Clin Cancer Res 18: 1004–1014

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag France, Paris

About this paper

Cite this paper

Arnedos, M., Delaloge, S., André, F. (2013). Définition biologique de l’agressivité tumorale : les signatures biologiques peuvent-elles être utilisées en pratique clinique ?. In: Acquis et limites en sénologie / Assets and limits in breast diseases. Springer, Paris. https://doi.org/10.1007/978-2-8178-0396-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0396-8_8

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0395-1

  • Online ISBN: 978-2-8178-0396-8

Publish with us

Policies and ethics