Skip to main content

Les défenses de l’organisme et immunité innée

  • Chapter
  • 1027 Accesses

Part of the book series: Références en réanimation. Collection de la SRLF ((SRLF))

Résumé

En 2011, le prix Nobel de physiologie ou de médecine était décerné à Ralph Steinman pour sa découverte des cellules dendritiques, éléments clés de l’immunité adaptative, et à Jules Hoff man et Bruce Beutler pour leurs travaux sur les récepteurs cellulaires de l’immunité innée. Cette reconnaissance des deux volets de l’immunité est réminiscente du prix Nobel accordé en 1908 à Élie Metchnikoff et à Paul Ehrlich, en récompense respectivement de leurs travaux sur l’immunité cellulaire et l’immunité humorale. En effet, l’immunité est classée en deux grands domaines : l’immunité innée et l’immunité adaptative, toutes deux impliquant des acteurs cellulaires et des facteurs humoraux. L’immunité adaptative, antérieurement qualifiée d’immunité spécifique, est nécessaire pour le contrôle des infections de longue durée et pour la mise en place d’une mémoire immunologique sur laquelle s’appuie la vaccination. Longtemps, l’immunité innée fut qualifiée d’ « immunité non spécifique », une formulation négative qui reflétait alors le faible intérêt pour ce volet de l’immunologie. Mais ces dernières années, ce domaine a fait l’objet d’un renouveau, en particulier, suite à la découverte des Toll-like receptors (TLR) et des Nod-like receptors (NLR). Ces récepteurs (Pattern recognition receptors, PRR) reconnaissent spécifiquement des déterminants microbiens nommés pathogen-associated molecular patterns (PAMP). Par conséquent, le concept d’immunité non spécifique n’est plus approprié pour définir l’immunité innée.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Janeway CA Jr (1989) Approaching the asymptote? Évolution and revolution in immunology. Cold Spring Harbor Symp Quant Biol 54: 1–13

    Article  PubMed  CAS  Google Scholar 

  2. Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12: 991–1045

    Article  PubMed  CAS  Google Scholar 

  3. von Behring E, Kitasato S (1890) On the acquisition of immunity against diphtheria and tetanus in animals (German). Dtsch Med Wochenschr 16: 1145–8

    Article  Google Scholar 

  4. Ehrlich P (1897) Die Wertbemessung des Diphterieheilserums und deren theoretische Grundlagen. Klinisches Jahrbuch 6: 299–326

    Google Scholar 

  5. Coutinho A, Kazatchkine MD, Avrameas S (1995) Natural autoantibodies. Curr Opin Immunol 7: 812–8

    Article  PubMed  CAS  Google Scholar 

  6. Vollmers HP, Brandlein S (2006) Natural IgM antibodies: the orphaned molecules in immune surveillance. Adv Drug Deliv Rev 58: 755–7

    Article  PubMed  CAS  Google Scholar 

  7. Ochsenbein AF, Zinkernagel RM (2000) Natural antibodies and complement link innate and acquired immunity. Immunol Today 21: 624–30

    Article  PubMed  CAS  Google Scholar 

  8. Boes M, Prodeus AP, Schmidt T, et al. (1998) A critical role of natural immunoglobulin M in immediate defense against systemic bacterial infection. J Exp Med 188: 2381–6

    Article  PubMed  CAS  Google Scholar 

  9. Guo RF, Ward PA (2005) Role of C5a in inflammatory responses. Annu Rev Immunol 23: 821–2

    Article  PubMed  CAS  Google Scholar 

  10. Prodeus AP, Zhou X, Maurer M, et al. (1997) Impaired mast cell-dependent natural immunity in complement C3-deficient mice. Nature 390: 172–5

    Article  PubMed  CAS  Google Scholar 

  11. Cavaillon JM (2011) The historical milestones in the understanding of leukocyte biology initiated by Elie Metchnikoff. J Leukoc Biol 90: 413–24

    Article  PubMed  CAS  Google Scholar 

  12. Wright AE, Douglas SR (1903) An experimental investigation on the role of the blood fluids in connection with phagocytosis. Proc R Soc London 72,: 357–70

    Article  Google Scholar 

  13. de Cathelineau AM, Henson PM (2003) The final step in programmed cell death: phagocytes carry apoptotic cells to the grave. Essays Biochem 39: 105–17

    Google Scholar 

  14. Brinkmann V, Reichard U, Goosmann C, et al. (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663): 1532–5

    Article  PubMed  CAS  Google Scholar 

  15. Clark SR, Ma AC, Tavener SA, et al. (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13: 463–946

    Article  PubMed  CAS  Google Scholar 

  16. Dziarski R, Gupta D (2010) Mammalian peptidoglycan recognition proteins (PGRPs) in innate immunity. Innate Immun 16: 168–74

    Article  PubMed  CAS  Google Scholar 

  17. Schroder JM, Harder J (1999) Human beta-defensin-2. Int J Biochem Cell Biol 31: 645–51

    Article  PubMed  CAS  Google Scholar 

  18. Harder J, Bartels J, Christophers E, Schroder JM (2001) Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276: 5707–13

    Article  PubMed  CAS  Google Scholar 

  19. Abraham SN, St John AL (2010) Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol 10: 440–52

    Article  PubMed  CAS  Google Scholar 

  20. Echtenacher B, Männel DN, Hültner L (1996) Critical protective role of mast cells in a model of acute septic peritonitis. Nature 381: 75–7

    Article  PubMed  CAS  Google Scholar 

  21. Malaviya R, Twesten NJ, Ross EA, et al. (1996) Mast cells process bacterial Ags through a phagocytic route for class I MHC presentation to T cells. J Immunol 156: 1490–6

    PubMed  CAS  Google Scholar 

  22. Miller JF, Brunner KT, Sprent J, et al. (1971) Thymus-derived cells as killer cells in cell-mediated immunity. Transplant Proc 3: 915–7

    PubMed  CAS  Google Scholar 

  23. Kiessling R, Klein E, Wigzell H (1975) “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 5(2): 112–7

    Article  PubMed  CAS  Google Scholar 

  24. MacFarlan RI, Burns WH, White DO (1997) Two cytotoxic cells in peritoneal cavity of virus-infected mice: antibody-dependent macrophages and nonspecific killer cells. J Immunol

    Google Scholar 

  25. Souza-Fonseca-Guimaraes F, Adib-Conquy M, Cavaillon JM (2012) Natural killer (NK) cells in antibacterial innate immunity: angels or devils? Mol Med 18: 270–85

    Article  PubMed  CAS  Google Scholar 

  26. Freitas A, Alves-Filho JC, Victoni T, et al. (2009) IL-17 receptor signaling is required to control polymicrobial sepsis. J Immunol 182: 7846–54

    Article  PubMed  CAS  Google Scholar 

  27. Flierl MA, Rittirsch D, Gao H, et al. (2008) Adverse functions of IL-17A in experimental sepsis. FASEB J 22: 2198–2205

    Article  PubMed  CAS  Google Scholar 

  28. Lemaitre B, Nicolas E, Michaut L, et al. (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal. Cell 86: 973–83

    Article  PubMed  CAS  Google Scholar 

  29. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388: 394–7

    Article  PubMed  CAS  Google Scholar 

  30. Poltorak A, He X, Smirnova I, et al. (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282: 2085–8

    Article  PubMed  CAS  Google Scholar 

  31. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140: 805–20

    Article  PubMed  CAS  Google Scholar 

  32. Girardin SE, Boneca IG, Carneiro LA, et al. (2003) Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300: 1584–7

    Article  PubMed  CAS  Google Scholar 

  33. Girardin SE, Boneca IG, Viala J, et al. (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278: 8869–72

    Article  PubMed  CAS  Google Scholar 

  34. Sabbah A, Chang TH, Harnack R, et al. (2009) Activation of innate immune antiviral responses by Nod2. Nat Immunol 10: 1073–80

    Article  PubMed  CAS  Google Scholar 

  35. Silva GK, Gutierrez FR, Guedes PM, et al. (2010) Nucleotide-binding oligomerization domain 1-dependent responses account for murine resistance against Trypanosoma cruzi infection. J Immunol 184: 1148–52

    Article  PubMed  CAS  Google Scholar 

  36. Shigeoka AA, Kambo A, Mathison JC, et al. (2010) Nod1 and nod2 are expressed in human and murine renal tubular epithelial cells and participate in renal ischemia reperfusion injury. J Immunol 184: 2297–2304

    Article  PubMed  CAS  Google Scholar 

  37. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140: 821–32

    Article  PubMed  CAS  Google Scholar 

  38. Lee BH, Inui D, Suh GY, et al. (2012) Association of body temperature and antipyretic treatments with mortality of critically ill patients with and without sepsis: multicentered prospective observational study. Crit Care 16: R33

    Article  PubMed  Google Scholar 

  39. Schortgen F, Clabault K, Katsahian S, et al. (2012) Fever control using external cooling in septic shock: a randomized controlled trial. Am J Respir Crit Care Med In press

    Google Scholar 

  40. Welch WH (1888) Cartwright lectures. The general pathology of fever. Boston Med Surg J 118: 413–21

    Article  Google Scholar 

  41. Legrand EK (1990) Endotoxin as an alarm signal of bacterial invasion: current evidence and implications. J Am Vet Med Assoc 197: 454–6

    PubMed  CAS  Google Scholar 

  42. Audibert F, Chedid L, Lefrancier P, et al. (1977) Relationship between chemical structure and adjuvant activity of some synthetic analogues of N-acetyl-muramyl-L-alanyl-D-isoglutamine (MDP). Ann Immunol (Paris) 128C: 653–61

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-M. Cavaillon .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Paris

About this chapter

Cite this chapter

Cavaillon, JM. (2013). Les défenses de l’organisme et immunité innée. In: Infectiologie en réanimation. Références en réanimation. Collection de la SRLF. Springer, Paris. https://doi.org/10.1007/978-2-8178-0389-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0389-0_1

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0388-3

  • Online ISBN: 978-2-8178-0389-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics