Skip to main content

Le futur de la contraception masculine

  • Chapter
La contraception masculine

Part of the book series: L’homme dans tous ses états ((L’homme dans tous ses états))

  • 507 Accesses

Résumé

En dépit de l’attention actuellement focalisée sur le réchauffement global et le terrorisme, une autre Némésis du genre humain, la surpopulation mondiale, est un problème en croissance lente qui devrait nécessiter notre constante attention. Elle reste un facteur majeur de déstabilisation du bien-être de chacun de nous, contribuant au réchauffement global en entrant directement en collision avec le niveau d’empreinte humaine de carbone, et creusant l’abîme de bien-être entre les pays développés et ceux en voie de développement. En plus des mesures socio-politiques, telles que la limitation de la taille des familles par des lois et la réduction du taux d’illettrisme chez les femmes, de nouvelles méthodes de contraception et une amélioration de la qualité et de la prévalence de celles déjà existantes sont d’une importance majeure. Manifestement, en dehors du préservatif et de la vasectomie, aucune méthode de contraception réversible moderne n’est encore accessible pour les hommes. En dépit de leur large utilisation, le préservatif et la vasectomie ne sont pas des méthodes optimales, en raison de la faible efficacité d’utilisation du préservatif et de l’absence de réversibilité de la vasectomie. Le bas niveau d’implication masculine dans la planification familiale est une vraie opportunité manquée dans nos tentatives de contrôler l’explosion de la population mondiale; aujourd’hui, la moitié des utilisateurs potentiels d’une contraception sont exclus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Anderson RA, Baird DT (2002) Male contraception. Endocrine Rev 23: 735–62

    Article  CAS  Google Scholar 

  2. Heineinann K, Saad F, Wiesenies M et al. (2005) Attitudes toward male fertility control: results of a multinational survey on four continents. Hum Reprod 20: 549–56

    Article  Google Scholar 

  3. Zhang L, Shah H, Liu Y et al. (2006) The acceptability of an injectable, once-a-month male contraceptive in China. Contraception 73: 548–53

    Article  PubMed  Google Scholar 

  4. Glasier AF, Anakwe R, Evaerington D et al. (2000) Would women trust their partners to use a male pill? Hum Reprod 15: 646–9

    Article  PubMed  CAS  Google Scholar 

  5. Nieschlag E (2009) Male Hormonal Contraception: Love’s labour’s lost? J Clin Endocrinol Metab 94: 1890–2

    Article  PubMed  CAS  Google Scholar 

  6. Page ST, Amory JK, Bremner WJ (2008) Advances in male contraception. Endocrine Rev 29: 465–93

    Article  CAS  Google Scholar 

  7. Huhtaniemi I (2010) A hormonal contraceptive for men: how close are we? Prog Brain Res 181: 273–89

    Article  PubMed  CAS  Google Scholar 

  8. Huhtaniemi I, Nikula H, Rannikko S (1985) Treatment of prostatic cancer with a gonadotropin-releasing hormone agonist analog: acute and long term effects on endocrine functions of testis tissue. J Clin Endocrinol Metab 61: 698–704

    Article  PubMed  CAS  Google Scholar 

  9. Matthiesson KL, McLachlan RI (2006) Male hormonal contraception: concept proven, product in sight? Hum Reprod Update 12: 463–82

    Article  PubMed  CAS  Google Scholar 

  10. Zhang FP, Pakarainen T, Poutanen M et al. (2003) The low gonadotropinindependent constitutive production of testicular testosterone is sufficient to maintain spcrmatogcncsis. Proc Natl Acad Sci USA 100: 13692–7

    Article  PubMed  CAS  Google Scholar 

  11. Singh J, O’Neill C, Handelsman DJ (1995) Induction of spermatogenesis by androgens in gonadotropin-deficient (hpg) mice. Endocrinol 136: 5311–21

    Article  CAS  Google Scholar 

  12. Zirkin BR, Santulli R, Awoniyi CA, Ewing LL (1989) Maintenance of advanced spermatogenic cells in the adult rat testis: quantitative relationship to testosterone concentration within the testis. Endocrinol 124: 3043–9

    Article  CAS  Google Scholar 

  13. Anderson RA, Wallace AM, Wu FC (1996) Comparison between testosterone enanthateinduced azoospermia and oligozoospermia in a male contraceptive study. III. Higher 5 alpha-reductase activity in oligozoospermic men administrated supraphysiological doses of testosterone. J Clin Endocrinol Metab 81: 902–8

    Article  PubMed  CAS  Google Scholar 

  14. Kinniburgh D, Anderson RA, Baird DT (2001) Suppression of spermatogenesis with desogestrel and testosterone pellets is not enhanced by addition of finasteride. J Androl 22: 88–95

    PubMed  CAS  Google Scholar 

  15. Matthiesson KL, Stanton PG, O’Donnell L et al (2005) Effects of testosterone and levonorgestrel and testosterone combined with 5 alpha-reductase inhibitor or gonadotropin-releasing hormone antagonist on spermatogenesis and intatesticular steroid levels in normal men. J Clin Endocrinol Metab 90: 5647–55

    Article  PubMed  CAS  Google Scholar 

  16. Page ST, Kalhorn TF, Bremner WJ et al. (2007) Intatesticular androgens and spermatogenesis during severe gonadotropin suppression induced by male hormonal contraceptive treatment. J Androl 28: 734–41

    Article  PubMed  CAS  Google Scholar 

  17. Handelsman DJ, Farley TM, Peregoudoy A, Waites GM (1995) Factors in nonuniform induction of azoospermia by testosterone enanthate in normal men. WHO Task Force on Methods for the Regulation of Male Fertility. Fertil Steril 63: 125–33

    PubMed  CAS  Google Scholar 

  18. Wallace AM, Gow SM, Wu FC (1993) Comparison between testosterone enanthateinduced azoospermia and oligozoospermia in a male contraceptive study. I. Plasma luteinizing hormone, follicle stimulating hormone, testosterone, estradiol, and inhibin concentrations. J Clin Endocrinol Metab 77: 290–3

    Article  PubMed  CAS  Google Scholar 

  19. McLachlan RI, Robertson DM, Pruysers E et al. (2004) Relationship between serum gonadotropins and spermatogenensis in men undergoing steroidal contraceptive treatment. J Clin Endocrinol Metab 89: 142–9

    Article  PubMed  CAS  Google Scholar 

  20. Liu PY, Swerdloff RS, Anawait BD, et al (2008) Determinants of the rate and extent of spermalogenic suppression during hormonal male contraception: an integrated analysis. J Clin Endocrinol Metab 93: 1774–83

    Article  PubMed  CAS  Google Scholar 

  21. Meriggiola MC, Bremner WJ, Paulsen CA, et al. (1996) A combined regimen of cyproterone acetate and testosterone enanthate as a potentially highly effective male contraception. J Clin Endocrinol Metab 81: 3018–23

    Article  PubMed  CAS  Google Scholar 

  22. Kornmann B, Nieschlag E, Zitzmann M et al. (2009) Body fat content and testosterone pharmacokinetics determine gonadotropin suppression after intramuscular injections of testosterone preparations in normal men. J Androl 30: 602–13

    Article  PubMed  CAS  Google Scholar 

  23. Eckardstein SV, Schmidt A, Kamischke A el al. (2002) GAG repeat length in the androgen receptor gene and gonadotropin suppression influences the effectiveness of male contraception. Clin Endocrinol 57: 647–55

    Article  CAS  Google Scholar 

  24. Yu B, Handelsman DJ (2001) Pharmacogenetic polymorphisms of the AR and metabolism and susceptibility to hormone-induced azoospermia. J Clin Endocrinol Metab 86: 4406–11

    Article  PubMed  CAS  Google Scholar 

  25. Amory JK, Page ST, Anawalt BD et al. (2007) Elevated end-of-treatment serum INSL3 is associated with failure to completely suppress spermatogenesis in inen receiving male hormonal contraception. J Androl 28: 548–54

    Article  PubMed  CAS  Google Scholar 

  26. Mortimers E, Kersemaekers WM, Elliesen J et al. (2008) Male hormonal contraception: a double-blind, placebo-controlled study. J Clin Endocrinol Metab 93: 2572–80

    Article  Google Scholar 

  27. Bashin S, Woodhouse L, Storer TW (2001) Proof of the effect of testosterone on skeletal muscle. J Endocrinol 170: 27–38

    Article  Google Scholar 

  28. Herbst KL, Anawalt BD, Amory JK et al. (2003) The male contraceptive regimen of testosterone and levonorgestrel increases lean mass in healthy young men in 4 weeks, but attenuates a decrease in fat mass induced by testosterone alone. J Clin Endocrinol Metab 88: 1167–73

    Article  PubMed  CAS  Google Scholar 

  29. Zilzmann M, Erren M, Kamischke A et al. (2005) Endogenous progesterone and the exogenous progestin norethisterone enanthate are associated with proinflammatory profile in healthy men. J Clin Endocrinol Metab 90: 6603–8

    Article  Google Scholar 

  30. Cooper CS, Maclndoe JH, Perry PJ et al. (1996) The effect of exogenous testosterone on total and Iree prostate specific antigen levels in healthy young men. J Urol 156: 438–41; discussion 441-2

    Article  PubMed  CAS  Google Scholar 

  31. Meriggiola MC, Costantino A, Saad F et al. (2005) Norethisterone enanthate plus testosterone enanthate for male contraception: effects of various injections intervals on spermatogenesis, reproductive hormones, testis, and prostate. J Clin Endocrinol Metab 90: 2005–14

    Article  PubMed  CAS  Google Scholar 

  32. Handelsman DJ, Wishart S, Conway AJ (2000) Oestradiol enhances testosteroneinduced suppression of spermatogenesis. Hum Reprod 15: 672–9

    Article  PubMed  CAS  Google Scholar 

  33. UNAIDS (2000) Condom social marketing: selected case studies. UNAIDS, Geneva

    Google Scholar 

  34. Ringheim K (1993) Factors that determine prevalence of use of contraceptive methods for men. Stud Fam Plann 24: 87–99

    Article  PubMed  CAS  Google Scholar 

  35. Hoodfar H (1995) Population policy and gender equity in post-revolutionary Iran. American University in Cairo Press, Cairo, Egypt

    Google Scholar 

  36. Hoodfar H (2000) The politics of population policy in the islamic republic of Iran. Stud Fam Plann 31: 19–34

    Article  PubMed  CAS  Google Scholar 

  37. Sethi N, Srivastava RK, Nath D, Singh RK (1991) Preclinical toxicity study of a male injectable antifertility agent (styrene maleic anhydride) in rhesus monkeys, Macaca mulatta. J Med Primatol 20: 89–93

    PubMed  CAS  Google Scholar 

  38. Chaudhury K, Bhattacharyya AK, Guha SK (2004) Studies on the membrane integrity of human sperm treated with a new injectable male contraceptive. Hum Reprod 19: 1826–30

    Article  PubMed  CAS  Google Scholar 

  39. Sharma U, Chaudhury K, Jagannalhan NR, Guha SK (2001) A proton NMR study of the effect of a new intravasal injectable male contraceptive RISUG on seminal plasma metabolites. Reproduction 122: 431–6

    Article  PubMed  CAS  Google Scholar 

  40. Manivannan B, Bhande SS, Panneerdoss S et al. (2005) Safety evaluation of long-term vas occlusion with styrene maleic anhydride and its non-invasive reversal on accessory reproductive organs in langurs. Asian J Androl 7: 195–204

    Article  PubMed  CAS  Google Scholar 

  41. Guha SK, Singh G, Srivastava A et al. (1998) Two-year clinical efficacy trial with dose variations of a vas deferens injectable contraceptive for the male. Contraception 58: 165–74

    Article  CAS  Google Scholar 

  42. Chaki SP, Das HO, Misro MM (2003) A short-term evaluation of semen and accessory sex gland function in phase III trial subjects receiving intravasal contraceptive RISUG. Contraception 67: 73–8

    Article  PubMed  CAS  Google Scholar 

  43. Shafik A (1991) Testicular suspension as a method of male contraception: technique and results. Adv Contr Deliv Syst VII: 269–79

    Google Scholar 

  44. Mieusset R, Bujan L (1994) the potential of mild testicular heating as a safe, effective and reversible contraceptive method for men. Int J Androl 17: 186–91

    Article  PubMed  CAS  Google Scholar 

  45. Shafik A (1992) contraceptive efficacy of polyester-induced azoospermia in normal men. Contraception 45: 439–51

    Article  PubMed  CAS  Google Scholar 

  46. Kopf GS (2008) Approaches to the identification of new nonhormonal targets for male contraception. Contraception 78: S18–22

    Article  PubMed  CAS  Google Scholar 

  47. Schultz N, Hamra FK, Garbers DL (2003) A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci USA 100: 12201–7

    Article  PubMed  CAS  Google Scholar 

  48. Naz RK, Engle A, None R (2009) Gene knockouts that affect male fertility: novel targets for contraception. Front Biosci 14: 3994–4007

    Article  PubMed  CAS  Google Scholar 

  49. Sipila P, Jalkanen J, Hutaniemi IT, Poutanen M (2009) Novel epididymal proteins as targets for the development of post-testicular male contraception. Reprod 137: 379–89

    CAS  Google Scholar 

  50. Mansour D, Inki P, Gemzell-Danielsson K (2010) Efficacy of contraceptive methods: a review of the literature. Eur J Contracep Reprod Healt Care 15: 4–16

    Article  CAS  Google Scholar 

  51. Kamal R, Gupta RS, Lohiya NK (2003) Plants for male fertility regulation. Phytother Res 17: 579–90

    Article  PubMed  Google Scholar 

  52. Chung SW, Wang X, Roberts SS et al. (2011) Oral administration of a retinoic acid receptor antagonist reversibly inhibits spermatogenesis in mice. Endocrinol 152: 2492–502

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Huhtaniemi .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag France

About this chapter

Cite this chapter

Huhtaniemi, I., Mieusset, R. (2013). Le futur de la contraception masculine. In: La contraception masculine. L’homme dans tous ses états. Springer, Paris. https://doi.org/10.1007/978-2-8178-0346-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0346-3_8

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0345-6

  • Online ISBN: 978-2-8178-0346-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics