Skip to main content

Development of Adipose Cells

  • Chapter
  • First Online:
Physiology and Physiopathology of Adipose Tissue

Abstract

The current epidemic of obesity and overweight has caused a surge of interest in the study of adipose tissue formation. Much progress has been made in defining the transcriptional networks controlling the terminal differentiation of preadipocytes into mature adipocytes. However, the earliest steps that direct mesenchymal stem cells located in adipose tissue (adipose-derived stem cells (ASCs)) down the adipocyte lineage remain largely unknown. In this chapter, we first focus on the identification of intrinsic and extrinsic factors regulating thebalance between human ASC proliferation and differentiation. We point out the role of factors secreted by undifferentiated ASCs, such a FGF2, activin A, Hedgehog molecules, or secreted by adipose tissue macrophages. We also outline the role of miRNAs in these processes. In a second part, the developmental origin of adipocytes during embryogenesis is discussed. We summarize the surprising findings that have recently emerged from in vivo lineage tracing studies, unravelling unsuspected developmental origins for white adipocytes. We examine the possibility that the differential developmental origin of adipocytes could also reflect functional site-specific regulations of adipose tissue. Finally, we present human-induced pluripotent stem cells as a novel model for investigating the earliest steps of human adipocyte development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bezaire V, Mairal A, Ribet C et al (2009) Contribution of adipose triglyceride lipase and hormone-sensitive lipase to lipolysis in hMADS adipocytes. J Biol Chem 284:18282–18291

    Article  PubMed  CAS  Google Scholar 

  • Bilkovski R, Schulte DM, Oberhauser F et al (2011) Adipose tissue macrophages inhibit adipogenesis of mesenchymal precursor cells via wnt-5a in humans. Int J Obes (Lond) 35:1450–1454

    Article  CAS  Google Scholar 

  • Billon N, Iannarelli P, Monteiro MC et al (2007) The generation of adipocytes by the neural crest. Development 134:2283–2292

    Article  PubMed  CAS  Google Scholar 

  • Billon N, Kolde R, Reimand J et al (2010) Comprehensive transcriptome analysis of mouse embryonic stem cell adipogenesis unravels new processes of adipocyte development. Genome Biol 11:R80

    Article  PubMed  Google Scholar 

  • Carnevalli LS, Masuda K, Frigerio F et al (2010) S6K1 plays a critical role in early adipocyte differentiation. Dev Cell 18:763–774

    Article  PubMed  CAS  Google Scholar 

  • Christodoulides C, Lagathu C, Sethi JK et al (2009) Adipogenesis and WNT signalling. Trends Endocrinol Metab 20(1):16–24

    Article  PubMed  CAS  Google Scholar 

  • Dani C, Smith A, Dessolin S et al (1997) Differentiation of embryonic stem cells into adipocytes in vitro. J Cell Sci 110:1279–1285

    PubMed  CAS  Google Scholar 

  • Divoux A, Tordjman J, Lacasa D et al (2010) Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes 59:2817–2825

    Article  PubMed  CAS  Google Scholar 

  • Djedaini M, Peraldi P, Drici MD et al (2009) Lopinavir co-induces insulin resistance and ER stress in human adipocytes. Biochem Biophys Res Commun 386:96–100

    Article  PubMed  CAS  Google Scholar 

  • Dupin E, Creuzet S, Le Douarin NM (2006) The contribution of the neural crest to the vertebrate body. Adv Exp Med Biol 589:96–119

    Article  PubMed  CAS  Google Scholar 

  • Elabd C, Chiellini C, Massoudi A et al (2007) Human adipose tissue-derived multipotent stem cells differentiate in vitro and in vivo into osteocyte-like cells. Biochem Biophys Res Commun 361:342–348

    Article  PubMed  CAS  Google Scholar 

  • Farmer SR (2006) Transcriptional control of adipocyte formation. Cell Metab 4:63–273

    Article  Google Scholar 

  • Fontaine C, Cousin W, Plaisant M et al (2008) Hedgehog signaling alters adipocyte maturation of human mesenchymal stem cells. Stem Cells 26:1037–1046

    Article  PubMed  CAS  Google Scholar 

  • Gesta S, Bluher M, Yamamoto Y et al (2006) Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc Natl Acad Sci (USA) 103:6676–6681

    Article  PubMed  CAS  Google Scholar 

  • Hauner H, Entenmann G, Wabitsch M et al (1989) Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium. J Clin Invest 84:63–1670

    Article  Google Scholar 

  • Kawaguchi J, Mee PJ, Smith AG (2005) Osteogenic and chondrogenic differentiation of embryonic stem cells in response to specific growth factors. Bone 36:758–769

    Article  PubMed  CAS  Google Scholar 

  • Keller GM (1995) In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol 7:862–869

    Article  PubMed  CAS  Google Scholar 

  • Keophiphath M, Achard V, Henegar C et al (2009) Macrophage-secreted factors promote a profibrotic phenotype in human preadipocytes. Mol Endocrinol 23:11–24

    Article  PubMed  CAS  Google Scholar 

  • Kim BS, Jung JS, Jang JH et al (2011) Nuclear Argonaute 2 regulates adipose tissue-derived stem cell survival through direct control of miR10b and selenoprotein N1 expression. Aging Cell 10:277–291

    Article  PubMed  CAS  Google Scholar 

  • Li N, Kelsh RN, Croucher P et al (2010) Regulation of neural crest cell fate by the retinoic acid and Pparg signalling pathways. Development 137:389–394

    Article  PubMed  CAS  Google Scholar 

  • Maumus M, Sengenes C, Decaunes P et al (2008) Evidence of in situ proliferation of adult adipose tissue-derived progenitor cells: influence of fat mass microenvironment and growth. J Clin Endocrinol Metab 93:4098–4106

    Article  PubMed  CAS  Google Scholar 

  • McGregor RA, Choi MS (2011) microRNAs in the regulation of adipogenesis and obesity. Curr Mol Med 11:304–316

    Article  PubMed  CAS  Google Scholar 

  • Mejhert N, Galitzky J, Pettersson AT et al (2010) Mapping of the fibroblast growth factors in human white adipose tissue. J Clin Endocrinol Metab 95:2451–2457

    Article  PubMed  CAS  Google Scholar 

  • Montague CT, Prins JB, Sanders L et al (1998) Depot-related gene expression in human subcutaneous and omental adipocytes. Diabetes 47:1384–1391

    Article  PubMed  CAS  Google Scholar 

  • Plaisant M, Giorgetti-Peraldi S, Gabrielson M et al (2011) Inhibition of hedgehog signaling decreases proliferation and clonogenicity of human mesenchymal stem cells. PLoS One 6:e16798

    Article  PubMed  CAS  Google Scholar 

  • Poitou C, Divoux A, Faty A et al (2009) Role of serum amyloid a in adipocyte-macrophage cross talk and adipocyte cholesterol efflux. J Clin Endocrinol Metab 94(5):1810–1817

    Article  PubMed  CAS  Google Scholar 

  • Rodeheffer MS, Birsoy K, Friedman JM (2008) Identification of white adipocyte progenitor cells in vivo. Cell 135:240–249

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez AM, Pisani D, Dechesne CA et al (2005) Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J Exp Med 201:1397–1405

    Article  PubMed  CAS  Google Scholar 

  • Rosen ED, Walkey CJ, Puigserver P et al (2000) Transcriptional regulation of adipogenesis. Genes Dev 14:1293–1307

    PubMed  CAS  Google Scholar 

  • Schulz H, Kolde R, Adler P et al (2009) The FunGenES database: a genomics resource for mouse embryonic stem cell differentiation. PLoS One 4:e6804

    Article  PubMed  Google Scholar 

  • Sengenes C, Lolmede K, Zakaroff-Girard A et al (2005) Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells. J Cell Physiol 205:114–122

    Article  PubMed  CAS  Google Scholar 

  • Smith AG, Nichols J, Robertson M et al (1992) Differentiation inhibiting activity (DIA/LIF) and mouse development. Dev Biol 151:339–351

    Article  PubMed  CAS  Google Scholar 

  • Spalding KL, Arner E, Westermark PO et al (2008) Dynamics of fat cell turnover in humans. Nature 453:783–787

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  • Takashima Y, Era T, Nakao K et al (2007) Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell 129:1377–1388

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Zeve D, Suh JM et al (2008) White fat progenitor cells reside in the adipose vasculature. Science 322:583–586

    Article  PubMed  CAS  Google Scholar 

  • Taura D, Noguchi M, Sone M et al (2009) Adipogenic differentiation of human induced pluripotent stem cells: comparison with that of human embryonic stem cells. FEBS Lett 583:1029–1033

    Article  PubMed  CAS  Google Scholar 

  • Tchkonia T, Lenburg M, Thomou T et al (2007) Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns. Am J Physiol Endocrinol Metab 292:E298–E307

    Article  PubMed  CAS  Google Scholar 

  • Tong Q, Dalgin G, Xu H et al (2000) Function of GATA transcription factors in preadipocyte-adipocyte transition. Science 290:134–138

    Article  PubMed  CAS  Google Scholar 

  • Vernochet C, Azoulay S, Duval D et al (2005) Human immunodeficiency virus protease inhibitors accumulate into cultured human adipocytes and alter expression of adipocytokines. J Biol Chem 280:2238–2243

    Article  PubMed  CAS  Google Scholar 

  • Vicente Lopez MA, Vazquez Garcia MN, Entrena A et al (2010) Low doses of bone morphogenetic protein 4 increase the survival of human adipose-derived stem cells maintaining their stemness and multipotency. Stem Cells Dev 20:1011–1019

    Article  PubMed  Google Scholar 

  • Wdziekonski B, Villageois P, Dani C (2003) Development of adipocytes from differentiated ES cells. Methods Enzymol 365:268–277

    Article  PubMed  CAS  Google Scholar 

  • Wdziekonski B, Villageois P, Vernochet C et al (2006) Use of differentiating embryonic stem cells in pharmacological studies. Methods Mol Biol 329:341–351

    PubMed  CAS  Google Scholar 

  • Weisberg SP, McCann D, Desai M et al (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808

    PubMed  CAS  Google Scholar 

  • Widberg CH, Newell FS, Bachmann AW et al (2009) Fibroblast growth factor receptor 1 is a key regulator of early adipogenic events in human preadipocytes. Am J Physiol Endocrinol Metab 296:E121–E131

    Article  PubMed  CAS  Google Scholar 

  • Xiong C, Xie CQ, Zhang L et al (2005) Derivation of adipocytes from human embryonic stem cells. Stem Cells Dev 14:671–675

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Barnes GT, Yang Q et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:21–1830

    Google Scholar 

  • Zamani N, Brown CW (2011) Emerging roles for the transforming growth factor-{beta} superfamily in regulating adiposity and energy expenditure. Endocr Rev 32:387–403

    Article  PubMed  CAS  Google Scholar 

  • Zaragosi LE, Ailhaud G, Dani C (2006) Autocrine fibroblast growth factor 2 signaling is critical for self-renewal of human multipotent adipose-derived stem cells. Stem Cells 24:2412–2419

    Article  PubMed  CAS  Google Scholar 

  • Zaragosi LE, Wdziekonski B, Villageois P et al (2010) Activin a plays a critical role in proliferation and differentiation of human adipose progenitors. Diabetes 59:2513–2521

    Article  PubMed  CAS  Google Scholar 

  • Zaragosi LE, Wdziekonski B, Le Brigand K et al (2011) Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biol 12:R64

    Article  PubMed  CAS  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Dani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag France

About this chapter

Cite this chapter

Mohsen-Kanson, T. et al. (2013). Development of Adipose Cells. In: Bastard, JP., Fève, B. (eds) Physiology and Physiopathology of Adipose Tissue. Springer, Paris. https://doi.org/10.1007/978-2-8178-0343-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0343-2_1

  • Published:

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0342-5

  • Online ISBN: 978-2-8178-0343-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics