Skip to main content

Physiologie de la gouttelette lipidique adipocytaire

  • Chapter
Physiologie et physiopathologie du tissu adipeux
  • 903 Accesses

Résumé

La gestion de l’énergie est une question cruciale pour les cellules et un stockage transitoire apparaît comme une stratégie adaptée pour pallier les périodes de privation nutritionnelle. à cet égard, toutes les cellules eucaryotes, de la levure aux cellules de mammifères, ont développé la capacité potentielle d’accumuler des lipides et de former des gouttelettes lipidiques en réponse à un afflux massif d’acides gras. Ces gouttelettes lipidiques contiennent des lipides neutres, qui constituent de très bons substrats pour stocker de l’énergie étant donné la structure hydrophobe de leur squelette et leur très grand nombre de carbones pouvant produire de l’ATP en grande quantité par oxydation mitochondriale. Par analogie aux granules de glycogène, qui constitue aussi une forme de stockage de l’énergie dérivée du glucose, les gouttelettes lipidiques ont longtemps été considérées comme des dépôts intracytoplasmiques inertes. Cependant, au cours de ces dernières années, notre connaissance de la biologie des gouttelettes s’est considérablement étoffée et, de simples réservoirs de lipides neutres, elles ont acquis le statut d’organelles dynamiques. De nombreuses revues récentes répertorient les nouvelles données sur ce sujet [1–4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Farese RV Jr., Walther T C (2009) Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139: 855–60

    Article  PubMed  CAS  Google Scholar 

  2. Murphy S, Martin S, Parton RG (2009) Lipid droplet-organelle interactions; sharing the fats. Biochim Biophys Acta 1791: 441–7

    Article  PubMed  CAS  Google Scholar 

  3. Thiele C, Spandl J (2008) Cell biology of lipid droplets. Curr Opin Cell Biol 20: 378–85

    Article  PubMed  CAS  Google Scholar 

  4. Goodman JM (2008) The gregarious lipid droplet. J Biol Chem 283: 28005–9

    Article  PubMed  CAS  Google Scholar 

  5. Tauchi-Sato K, Ozeki S, Houjou T et al. (2002) The surface of lipid droplets is a phospholipid monolayer with a unique Fatty Acid composition. J Biol Chem 277: 44507–12

    Article  PubMed  CAS  Google Scholar 

  6. Grillitsch K, Connerth M, Kofeler H et al. (2011) Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: Lipidome meets Proteome. Biochim Biophys Acta 1811: 1165–76.

    Article  PubMed  CAS  Google Scholar 

  7. Blouin CM, Le Lay S, Eberl A et al. (2010) Lipid droplet analysis in caveolin-deficient adipocytes: alterations in surface phospholipid composition and maturation defects. J Lipid Res 51: 945–56

    Article  PubMed  CAS  Google Scholar 

  8. Kimmel AR, Brasaemle DL, McAndrews-Hill M et al. (2010) Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J Lipid Res 51: 468–71

    Article  PubMed  CAS  Google Scholar 

  9. Greenberg AS, Egan JJ, Wek SA et al. (1991) Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J Biol Chem 266: 11341–6

    PubMed  CAS  Google Scholar 

  10. Bickel PE, Tansey JT, Welte MA (2009) PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochim Biophys Acta 1791: 419–40

    Article  PubMed  CAS  Google Scholar 

  11. Brasaemle DL, Dolios G, Shapiro L, Wang R (2004) Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 279: 46835–42

    Article  PubMed  CAS  Google Scholar 

  12. Zehmer JK, Huang Y, Peng G et al. (2009) A role for lipid droplets in inter-membrane lipid traffic. Proteomics 9: 914–21

    Article  PubMed  CAS  Google Scholar 

  13. Welte MA (2009) Fat on the move: intracellular motion of lipid droplets. Biochem Soc Trans 37: 991–6

    Article  PubMed  CAS  Google Scholar 

  14. Franke WW, Hergt M, Grund C (1987) Rearrangement of the vimentin cytoskeleton during adipose conversion: formation of an intermediate filament cage around lipid globules. Cell 49: 131–41

    Article  PubMed  CAS  Google Scholar 

  15. Parton RG, Molero JC, Floetenmeyer M et al. (2002) Characterization of a distinct plasma membrane macrodomain in differentiated adipocytes. J Biol Chem 277: 46769–78

    Article  PubMed  CAS  Google Scholar 

  16. Pilch PF, Liu L (2011) Fat caves: caveolae, lipid trafficking and lipid metabolism in adipocytes. Trends Endocrinol Metab 22: 318–24

    Article  PubMed  CAS  Google Scholar 

  17. Ost A, Ortegren U, Gustavsson J et al. (2005) Triacylglycerol is synthesized in a specific subclass of caveolae in primary adipocytes. J Biol Chem 280: 5–8

    PubMed  Google Scholar 

  18. Blanchette-Mackie EJ, Dwyer NK, Barber T et al. (1995) Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. J Lipid Res 36: 1211–26

    PubMed  CAS  Google Scholar 

  19. Robenek H, Hofnagel O, Buers I et al. (2006) Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis. J Cell Sci 119: 4215–24

    Article  PubMed  CAS  Google Scholar 

  20. Murphy DJ, Vance J (1999) Mechanisms of lipid-body formation. Trends Biochem Sci 24: 109–15

    Article  PubMed  CAS  Google Scholar 

  21. Martin S, Parton RG (2006) Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 7: 373–8

    Article  PubMed  CAS  Google Scholar 

  22. Ploegh HL (2007) A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature 448: 435–8

    Article  PubMed  CAS  Google Scholar 

  23. Robenek MJ, Severs NJ, Schlattmann K et al. (2004) Lipids partition caveolin-1 from ER membranes into lipid droplets: updating the model of lipid droplet biogenesis. FASEB J 18: 866–8

    PubMed  CAS  Google Scholar 

  24. Spalding KL, Arner E, Westermark PO et al. (2008) Dynamics of fat cell turnover in humans. Nature 453: 783–7

    Article  PubMed  CAS  Google Scholar 

  25. Arner P, Bernard S, Salehpour M et al. (2011) Dynamics of human adipose lipid turnover in health and metabolic disease. Nature 478: 110–3

    Article  PubMed  CAS  Google Scholar 

  26. Zimmermann R, Strauss JG, Haemmerle G et al. (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306: 1383–6

    Google Scholar 

  27. Singh R, Kaushik S, Wang Y et al. (2009) Autophagy regulates lipid metabolism. Nature 458: 1131–5

    Article  PubMed  CAS  Google Scholar 

  28. Singh R, Xiang Y, Wang Y et al. (2009) Autophagy regulates adipose mass and differentiation in mice. J Clin Invest 119: 3329–39

    Article  PubMed  CAS  Google Scholar 

  29. Zhang Y, Goldman S, Baerga R et al. (2009) Adipose-specific deletion of autophagyrelated gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci États-Unis 106: 19860–5

    CAS  Google Scholar 

  30. Baerga R, Zhang Y, Chen PH et al. (2009) Targeted deletion of autophagy-related 5 (atg5) impairs adipogenesis in a cellular model and in mice. Autophagy 5: 1118–30

    Article  PubMed  CAS  Google Scholar 

  31. Schweiger M, Schreiber R, Haemmerle G e et al. (2006) Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem 281: 40236–41

    Article  PubMed  CAS  Google Scholar 

  32. Le Lay S, Briand N, Blouin C M et al. (2010) The lipoatrophic caveolin-1 deficient mouse model reveals autophagy in mature adipocytes. Autophagy 6: 754–63

    Article  PubMed  Google Scholar 

  33. Ouimet M, Franklin V, Mak E et al. (2011) Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab 13: 655–67

    Article  PubMed  CAS  Google Scholar 

  34. Ohsaki Y, Cheng J, Suzuki M et al. (2009) Biogenesis of cytoplasmic lipid droplets: from the lipid ester globule in the membrane to the visible structure. Biochim Biophys Acta 1791: 399–407

    Article  PubMed  CAS  Google Scholar 

  35. Kuerschner L, Moessinger C, Thiele C (2008) Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic 9: 338–52

    Article  PubMed  CAS  Google Scholar 

  36. Moessinger C, Kuerschner L, Spandl J et al. (2011) Human lysophosphatidylcholine acyltransferases 1 and 2 are located in lipid droplets where they catalyze the formation of phosphatidylcholine. J Biol Chem 286: 21330–9

    Article  PubMed  CAS  Google Scholar 

  37. Krahmer N, Guo Y, Wilfling F et al. (2011) Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP: phosphocholine cytidylyltransferase. Cell Metab 14: 504–15

    Article  PubMed  CAS  Google Scholar 

  38. Murphy S, Martin S, Parton RG (2010) Quantitative analysis of lipid droplet fusion: inefficient steady state fusion but rapid stimulation by chemical fusogens. PLoS One 5: e15030

    Google Scholar 

  39. Guo Y, Walther TC, Rao M et al. (2008) Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453: 657–61

    Article  PubMed  CAS  Google Scholar 

  40. Boström P, Andersson L, Rutberg M et al. (2007) SNARE proteins mediate fusion between cytosolic lipid droplets and are implicated in insulin sensitivity. Nat Cell Biol 9: 1286–93

    Article  PubMed  Google Scholar 

  41. Chun TH, Hotary KB, Sabeh F et al. (2006) A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 125: 577–91

    Article  PubMed  CAS  Google Scholar 

  42. Marcinkiewicz A, Gauthier D, Garcia A, Brasaemle DL (2006) The phosphorylation of serine 492 of perilipin a directs lipid droplet fragmentation and dispersion. J Biol Chem 281: 11901–9

    Article  PubMed  CAS  Google Scholar 

  43. van Herpen NA, Schrauwen-Hinderling VB (2008) Lipid accumulation in non-adipose tissue and lipotoxicity. Physiol Behav 94: 231–41

    Article  PubMed  Google Scholar 

  44. Razani B, Combs TP, Wang XB et al. (2002) Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J Biol Chem 277: 8635–47

    Article  PubMed  CAS  Google Scholar 

  45. Nishino N, Tamori Y, Tateya S et al. (2008) FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J Clin Invest 118: 2808–21

    PubMed  CAS  Google Scholar 

  46. Tansey JT, Sztalryd C, Gruia-Gray J et al. (2001) Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proc Natl Acad Sci États-Unis 98: 6494–9

    Article  CAS  Google Scholar 

  47. Gandotra S, Le Dour C, Bottomley W et al. (2011) Perilipin deficiency and autosomal dominant partial lipodystrophy. N Engl J Med 364: 740–8

    Article  PubMed  CAS  Google Scholar 

  48. Kim CA, Delepine M, Boutet E et al. (2008) Association of a homozygous nonsense caveolin-1 mutation with Berardinelli-Seip congenital lipodystrophy. J Clin Endocrinol Metab 93: 1129–34

    Article  PubMed  CAS  Google Scholar 

  49. Rubio-Cabezas O, Puri V, Murano I et al. (2009) Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC. EMBO Mol Med 1: 280–7

    Article  PubMed  CAS  Google Scholar 

  50. Brasaemle DL (2007) Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 48: 2547–59

    Article  PubMed  CAS  Google Scholar 

  51. Brasaemle DL, Rubin B, Harten IA et al. (2000) Perilipin A increases triacylglycerol storage by decreasing the rate of triacylglycerol hydrolysis. J Biol Chem 275: 38486–93

    Article  PubMed  CAS  Google Scholar 

  52. Brasaemle DL, Barber T, Wolins NE et al. (1997) Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. J Lipid Res 38: 2249–63

    PubMed  CAS  Google Scholar 

  53. Dalen KT, Schoonjans K, Ulven SM et al. (2004) Adipose tissue expression of the lipid droplet-associating proteins S3–12 and perilipin is controlled by peroxisome proliferator-activated receptor-gamma. Diabetes 53: 1243–52

    Article  PubMed  CAS  Google Scholar 

  54. Straub BK, Stoeffel P, Heid H et al. (2008) Differential pattern of lipid droplet-associated proteins and de novo perilipin expression in hepatocyte steatogenesis. Hepatology 47: 1936–46

    Article  PubMed  CAS  Google Scholar 

  55. Bell M, Wang H, Chen H et al. (2008) Consequences of lipid droplet coat protein downregulation in liver cells: abnormal lipid droplet metabolism and induction of insulin resistance. Diabetes 57: 2037–45

    Article  PubMed  CAS  Google Scholar 

  56. Tansey JT, Sztalryd C, Hlavin EM et al. (2004) The central role of perilipin a in lipid metabolism and adipocyte lipolysis. IUBMB Life 56: 379–85

    Article  PubMed  CAS  Google Scholar 

  57. Deram S, Nicolau CY, Perez-Martinez P et al. (2008) Effects of perilipin (PLIN) gene variation on metabolic syndrome risk and weight loss in obese children and adolescents. J Clin Endocrinol Metab 93: 4933–40

    Article  PubMed  CAS  Google Scholar 

  58. Danesch U, Hoeck W, Ringold GM (1992) Cloning and transcriptional regulation of a novel adipocyte-specific gene, FSP27._CAAT-enhancer-binding protein (C/EBP) and C/EBP-like proteins interact with sequences required for differentiation-dependent expression. J Biol Chem 267: 7185–93

    PubMed  CAS  Google Scholar 

  59. Matsusue K, Kusakabe T, Noguchi T et al. (2008) Hepatic steatosis in leptin-deficient mice is promoted by the PPARgamma target gene Fsp27. Cell Metab 7: 02–311

    Article  Google Scholar 

  60. Liang L, Zhao M, Xu Z et al. (2003) Molecular cloning and characterization of CIDE-3, a novel member of the cell-death-inducing DNA-fragmentation-factor (DFF45)-like effector family. Biochem J 370: 195–203

    Article  PubMed  CAS  Google Scholar 

  61. Keller P, Petrie JT, De Rose P et al. (2008) Fat-specific protein 27 regulates storage of triacylglycerol. J Biol Chem 283: 14355–65

    Article  PubMed  CAS  Google Scholar 

  62. Puri V, Konda S, Ranjit S et al. (2007) Fat-specific protein 27, a novel lipid droplet protein that enhances triglyceride storage. J Biol Chem 282: 34213–8

    Article  PubMed  CAS  Google Scholar 

  63. Puri V, Ranjit S, Konda S et al. (2008) Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc Natl Acad Sci États-Unis 105: 7833–8

    Article  CAS  Google Scholar 

  64. Rothberg KG, Heuser JE, Donzell WC et al. (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68: 673–82

    Article  PubMed  CAS  Google Scholar 

  65. Le Lay S, Hajduch E, Lindsay MR et al. (2006) Cholesterol-induced caveolin targeting to lipid droplets in adipocytes: a role for caveolar endocytosis. Traffic 7: 549–61

    Article  PubMed  Google Scholar 

  66. Fujimoto T, Kogo H, Ishiguro K et al. (2001) Caveolin-2 is targeted to lipid droplets, a new “membrane domain” in the cell. J Cell Biol 152: 1079–85

    Article  PubMed  CAS  Google Scholar 

  67. Ostermeyer AG, Paci JM, Zeng Y et al. (2001) Accumulation of caveolin in the endoplasmic reticulum redirects the protein to lipid storage droplets. J Cell Biol 152: 1071–8

    Article  PubMed  CAS  Google Scholar 

  68. Pol A, Luetterforst R, Lindsay M et al. (2001) A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J Cell Biol 152: 1057–70

    Article  PubMed  CAS  Google Scholar 

  69. Blouin CM, Le Lay S, Lasnier F et al. (2008) Regulated association of caveolins to lipid droplets during differentiation of 3T3-L1 adipocytes. Biochem Biophys Res Commun 376: 331–5

    Article  PubMed  CAS  Google Scholar 

  70. Le Lay S, Blouin CM, Hajduch E, Dugail I (2009) Filling up adipocytes with lipids. Lessons from caveolin-1 deficiency. Biochim Biophys Acta 1791: 514–8

    Article  PubMed  Google Scholar 

  71. Walther TC, Farese RVJr. (2009) The life of lipid droplets. Biochim Biophys Acta 1791: 459–66

    Article  PubMed  CAS  Google Scholar 

  72. Miyanari Y, Atsuzawa K, Usuda N et al. (2007) The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 9: 1089–97

    Article  PubMed  CAS  Google Scholar 

  73. Boulant S, Douglas MW, Moody L et al. (2008) Hepatitis C virus core protein induces lipid droplet redistribution in a microtubule-and dynein-dependent manner. Traffic 9: 1268–82

    Article  PubMed  CAS  Google Scholar 

  74. Kim MJ, Marchand P, Henegar C et al. (2011) Fate and complex pathogenic effects of dioxins and polychlorinated biphenyls in obese subjects before and after drastic weight loss. Environ Health Perspect 119: 377–83

    Article  PubMed  CAS  Google Scholar 

  75. Bourez S, Le Lay S, Van den Daelen C et al (2012) Accumulation of polychlorinated biphenyls in adipocytes: selective targeting to lipid droplets and role of caveolin-1. PLoS One 7(2):e31834

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Dugail .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Paris

About this chapter

Cite this chapter

Dugail, I., Le Lay, S. (2013). Physiologie de la gouttelette lipidique adipocytaire. In: Physiologie et physiopathologie du tissu adipeux. Springer, Paris. https://doi.org/10.1007/978-2-8178-0332-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0332-6_9

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0331-9

  • Online ISBN: 978-2-8178-0332-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics