Skip to main content

Le transport du glucose dans l’adipocyte blanc

  • Chapter
Physiologie et physiopathologie du tissu adipeux
  • 888 Accesses

Résumé

Le glucose est transporté à travers la membrane plasmique de l’adipocyte grâce à un transport facilité. Il est transporté en fonction des différences de concentration entre l’extérieur et l’intérieur de la cellule sans besoin d’énergie. Le transport de glucose est stimulé par l’insuline dans l’adipocyte in vivo, en culture primaire, et dans des lignées. On sait depuis 1980, bien avant le clonage des protéines responsables du transport de glucose, que l’effet de l’insuline est la conséquence de la redistribution de l’activité transport de glucose depuis l’intérieur de la cellule vers la membrane plasmique [1, 2]. Ce contrôle est perturbé lors d’un jeûne, de l’obésité et du diabète de type 2. Les adipocytes sont hypersensibles à l’insuline lors de la réalimentation après un jeûne, après une restriction calorique et dans la phase de développement de l’obésité. Le transport de glucose par l’adipocyte est donc contrôlé à court terme et à long terme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Suzuki K, Kono T (1980) Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc Natl Acad Sci États-Unis 77: 2542–5

    Article  CAS  Google Scholar 

  2. Cushman SW, Wardzala LJ (1980) Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J Biol Chem 255: 4758–62

    PubMed  CAS  Google Scholar 

  3. Skrypski M, T Le T, Kaczmarek P et al. (2011) Orexin A stimulates glucose uptake, lipid accumulation and adiponectin secretion from 3T3-L1 adipocytes and isolated primary rat adipocytes. Diabetologia 54: 1841–52

    Article  Google Scholar 

  4. Wu X, Motoshima H, Mahadev K et al. (2003) Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes: 1355–63

    Google Scholar 

  5. Heseltine L, Webster JM, Taylor R (1995) Adenosine effects upon insulin action on lipolysis and glucose transport in human adipocytes. Mol Cell Biochem 144: 147–51

    Article  PubMed  CAS  Google Scholar 

  6. Dong Q, Ginsberg HN, Erlanger BF (2001) Overexpression of the A1 adenosine receptor in adipose tissue protects mice from obesity-related insulin resistance. Diabetes Obes Metab 3: 360–6

    Article  PubMed  CAS  Google Scholar 

  7. Dhalla AK, Wong MY, Voshol PJ et al. (2007) A1 adenosine receptor partial agonist lowers plasma FFA and improves insulin resistance induced by high-fat diet in rodents. Am J Physiol Endocrinol Metab 292: E1358–E63

    Article  PubMed  CAS  Google Scholar 

  8. Faulhaber-Walter R, Jou W, Mizel D et al. (2011) Impaired glucose tolerance in the absence of adenosine A1 receptor signaling. Diabetes 60: 2578–87

    Article  PubMed  CAS  Google Scholar 

  9. Figler RA, Wang G, Srinivasan S et al. (2011) Links between insulin resistance, adenosine A2B receptors, and inflammatory markers in mice and humans. Diabetes 60: 669–79

    Article  PubMed  CAS  Google Scholar 

  10. Kaddai V, Gonzalez T, Bolla M et al. (2008) The nitric oxide-donating derivative of acetylsalicylic acid, NCX 4016, stimulates glucose transport and glucose transporters translocation in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 192: E162–E9

    Article  Google Scholar 

  11. Regazzetti C, Peraldi P, Grémeaux T et al. (2009) Hypoxia decreases insulin signaling pathways in adipocytes. Diabetes 58: 95–103

    Article  PubMed  CAS  Google Scholar 

  12. Hoehn KL, Hohnen-Behrens C, Cederberg A et al. (2008) IRS1-independent defects define major nodes of insulin resistance. Cell Metab 7: 421–233

    Article  PubMed  CAS  Google Scholar 

  13. Kaddai V, Jager J, Gonzalez T et al. (2009) Involvement of TNF-alpha in abnormal adipocyte and muscle sortilin expression in obese mice and humans. Diabetologia 2009: 932–40

    Article  Google Scholar 

  14. Thorens B, Mueckler M (2009) Glucose transporters in the 21st century. Am J Physiol Endocrinol Metab 298: E141–E5

    Article  PubMed  Google Scholar 

  15. Purcell SC, Aerni-Flessner LB, Willcockson AR et al (2011) Improved insulin sensitivity by GLUT12 overexpression in mice. Diabetes 60: 1478–82

    Article  PubMed  CAS  Google Scholar 

  16. Lewko B, Bryl E, Witkowski JM et al. (2005) Characterization of glucose uptake by cultured rat podocytes. Kidney Blood Press Res 28: 1–7

    Article  PubMed  CAS  Google Scholar 

  17. Kobayashi M, Nikami H, Morimatsu M et al. (1996) Expression and localization of insulin-regulatable glucocse transporter (GLUT4) in rat brain. Neurosci Lett 213: 103–6

    Article  PubMed  CAS  Google Scholar 

  18. Graham TE, Kahn BB (2007) Tissue-specific alterations of glucose transport and molecular mechanisms of intertissue communication in obesity and type 2 diabetes. Horm Metab Res 39: 717–21

    Article  PubMed  CAS  Google Scholar 

  19. Rowland AF, Fazakerley DJ, James DE (2011) Mapping insulin/GLUT4 circuitry. Traffic 12: 672–81

    Article  PubMed  CAS  Google Scholar 

  20. Liao W, Nguyen MT, Imamura T et al. (2006) Lentiviral short hairpin ribonucleic acidmediated knockdown of GLUT4 in 3T3-L1 adipocytes. Endocrinology 147: 2245–52

    Article  PubMed  CAS  Google Scholar 

  21. Abel ED, Peroni OD, Kim JK et al. (2001) Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409: 729–33

    Article  PubMed  CAS  Google Scholar 

  22. Hajduch E, Darakhshan F, Hundal HS (1998) Fructose uptake in rat adipocytes: GLUT5 expression and the effects of streptozotocin-induced diabetes. Diabetologia 41: 821–8

    Article  PubMed  CAS  Google Scholar 

  23. Carvalho E, Kotani K, Peroni OD et al. (2005) Adipose-specific overexpression of GLUT4 reverses insulin resistance and diabetes in mice lacking GLUT4 selectively in muscle. Am J Physiol Endocrinol Metab 289: E551–E61

    Article  PubMed  CAS  Google Scholar 

  24. Yang Q, Graham TE, Mody N et al. (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436: 337–8

    Article  Google Scholar 

  25. Im S-S, Kwon S-K, Kim T-H et al. (2007) Regulation of glucose transporter type 4 isoform gene expression in muscles and adipocytes. IUBMB Life 59: 134–45

    Article  PubMed  CAS  Google Scholar 

  26. Sparling DP, Griesel BA, Weems J et al. (2008) GLUT4 enhancer factor (GEF) interacts with MEF2A and HDAC5 to regulate GLUT4 promoter in adipocytes. J Biol Chem 283: 7429–34

    Article  PubMed  CAS  Google Scholar 

  27. Lumeng CN, Deyoung SM, Saltiel AR (2006) Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins. Am J Pysiol Endocrinol Metab 292: E166–E74

    Article  Google Scholar 

  28. Ruan H, Hacohen N, Golub TR et al. (2002) Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-kappaB activation by TNF-alpha is obligatory. Diabetes 51: 1319–36

    Article  PubMed  CAS  Google Scholar 

  29. Pessler-Cohen D, Pekala PH, Kosvan J et al. (2006) GLUT4 repression in response to oxidative stress is associated with reciprocal alterations in C/EBP alpha and delta isoforms in 3T3-L1 adipocytes. Arch Physiol Biochem 112: 3–12

    Article  PubMed  CAS  Google Scholar 

  30. Qi L, Saberi M, Zmuda E et al. (2009) Adipocyte CREB promotes insulin resistance in obesity. Cell Metab 9: 277–86

    Article  PubMed  CAS  Google Scholar 

  31. Long SD, Pekala PH (1996) Regulation of GLUT4 mRNA stability by tumor necrosis factor-alpha: alterations in both protein binding to the 3′untranslated region and initiation of translation. Biochem Biophys Res Commun 220: 949–53

    Article  PubMed  CAS  Google Scholar 

  32. Bogan JS, Kandror KV (2010) Biogenesis and regulation of insulin-responsive vesicles containing Glut4. Curr Opin Cell Biol 22: 506–12

    Article  PubMed  CAS  Google Scholar 

  33. Rubin BR, Bogan JS (2009) Intracellular retention and insulin stimulated mobilization of GLUT4 glucose transporters. Vitam Horm 80: 155–92

    Article  PubMed  CAS  Google Scholar 

  34. Kaddai V, Gonzalez T, Keslair F et al. (2009) Rab4b is a small GTPase involved in the control of the glucose transporter GLUT4 localization in adipocyte. PLoS One e: 5257

    Google Scholar 

  35. Mari M, Monzo P, Kaddai V et al. (2006) The Rab4 effector Rabip4 plays a role in intracellular trafficking of Glut 4 in 3T3-L1 adipocytes. J Cell Sci 119: 1297–306

    Article  PubMed  CAS  Google Scholar 

  36. Xu Y, Rubin BR, Orme CM et al. (2011) Dual-mode of insulin action controls GLUT4 vesicle exocytosis. J Cell Biol 193: 643–53

    Article  PubMed  CAS  Google Scholar 

  37. Kaddai V, Le Marchand-Brustel Y, Cormont M (2008) Rab proteins in endocytosis and Glut4 trafficking. Acta Physiol 192: 75–88

    Article  CAS  Google Scholar 

  38. Bryant NJ, Gould GW (2011) SNARE Proteins underpin insulin-regulated GLUT4 traffic. Traffic 12: 657–64

    Article  PubMed  CAS  Google Scholar 

  39. Koumanov F, Jin B, Yang J et al. (2005) Insulin signaling meets vesicle traffic of GLUT4 at a plasma-membrane-activated fusion step. Cell Metab 2: 179–89

    Article  PubMed  CAS  Google Scholar 

  40. Aran V, Bryant NJ, W GG (2011) Tyrosine phosphorylation of Munc18c on residue 521 abrogates binding to syntaxin 4. BMC Biochem 12: 19

    Article  PubMed  CAS  Google Scholar 

  41. Jewell JL, Oh E, Ramalingam L et al. (2011) Munc18c phosphorylation by insulin receptor links cell signaling directly to SNARE exocytosis. J Cell Biol 193: 185–99

    Article  PubMed  CAS  Google Scholar 

  42. Xie X, Gong Z, Mansuy-Aubert V et al. (2011) C2 domain-containing phosphoprotein CDP138 regulates Glut4 insertion into the plasma membrane. Cell Metab 14: 378–89

    Article  PubMed  CAS  Google Scholar 

  43. Novick P, Medkova M, Dong G et al. (2006) Interactions between Rabs, tethers, SNAREs and their regulators in exocytosis. Biochem Soc Trans 34: 683–6

    Article  PubMed  CAS  Google Scholar 

  44. Weber-Boyvat M, Aro N, Chernov KG et al. (2011) Sec1p and Mso1p C-terminal tails cooperate with SNAREs and Sec4 in ploarized exocytosis. Mol Biol Cell 22: 230–44

    Article  PubMed  CAS  Google Scholar 

  45. Sano H, Peck GR, Kettenbach AN et al. (2011) Insulin-stimulated GLUT4 protein translocation in adipocytes requires the Rab10 guanine nucleotide exchange factor Dennd4C. J Biol Chem 286: 16541–5

    Article  PubMed  CAS  Google Scholar 

  46. Gual P, Le Marchand-Brustel Y, Tanti JF (2003) Positive and negative regulation of glucose uptake by hyperosmotic stress. Diabetes Metab 29: 566–75

    Article  PubMed  CAS  Google Scholar 

  47. Garvey WT, Maianu L, Zhu J-H et al. (1993) Multiple defects in the adipocyte glucose transport system cause cellular insulin resistance in gestational diabetes. Heterogeneity in the number and a novel abnormality in subcellular localization of GLUT4 glucose transporters. Diabetes 42: 1773–85

    Article  PubMed  CAS  Google Scholar 

  48. Maianu L, Keller SR, Garvey WT (2001) Adipocytes exhibit abnormal subcellular distribution and translocation of vesicles containing glucose transporter 4 and insulinregulated aminopeptidase in type 2 diabetes mellitus: implication regarding defects in vesicle trafficking. J Clin Endocrinol Metab 86: 5450–6

    Article  PubMed  CAS  Google Scholar 

  49. Fujita H, Hatakeyama H, Watanabe TM et al. (2010) Identification of three disting functional sites of insulin-mediated GLUT4 trafficking in adipocytes using quantitative single molecule imaging. Mol Biol Cell 21: 2721–31

    Article  PubMed  CAS  Google Scholar 

  50. Dash S, Langenberg C, Fawcett KA et al. (2010) Analysis of TBC1D4 in patients with severe insulin resistance. Diabetologia 53: 1239–342

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cormont .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Paris

About this chapter

Cite this chapter

Cormont, M., Kaddai, V. (2013). Le transport du glucose dans l’adipocyte blanc. In: Physiologie et physiopathologie du tissu adipeux. Springer, Paris. https://doi.org/10.1007/978-2-8178-0332-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0332-6_7

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0331-9

  • Online ISBN: 978-2-8178-0332-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics