Skip to main content
  • 883 Accesses

Résumé

Le rôle majeur du tissu adipeux (TA) est la mise en réserve de lipides. En plus de cette fonction clé dans le maintien de l’homéostasie énergétique de l’organisme, le TA est maintenant reconnu comme un organe endocrine. Ces deux fonctions métaboliques et sécrétoires nécessitent des interactions constantes entre le compartiment sanguin et les adipocytes et mettent ainsi en lumière l’importance du réseau vasculaire du TA. Dans l’espèce humaine, la masse adipeuse présente une capacité unique de développement et de croissance pendant toutes les phases de la vie. L’adipocyte change sa taille de façon dynamique en fonction des quantités de lipides à mettre en réserve ou à mobiliser. Lorsque l’hypertrophie adipocytaire a atteint son état maximal, des nouveaux adipocytes apparaissent provenant de la différenciation (ou adipogenèse) des cellules progénitrices des adipocytes [1]. Même si le nombre d’adipocytes est considéré comme constant chez l’adulte, l’adipogenèse est un processus essentiel pour le renouvellement adipocytaire et le maintien du TA [2]. Cette plasticité du TA nécessite un remodelage constant de son rèseau vasculaire.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Bjorntorp P, Sjostrom L (1972) Fat cell size and number in adipose tissue in relation to metabolism. Isr J Med Sci 8: 320–4

    PubMed  CAS  Google Scholar 

  2. Spalding KL, Arner E, Westermark PO et al. (2008) Dynamics of fat cell turnover in humans. Nature 453: 783–7

    Article  PubMed  CAS  Google Scholar 

  3. Chakraborty S, Zawieja S, Wang W et al. (2011) M Lymphatic system: a vital link between metabolic syndrome and inflammation. Ann N Y Acad Sci 1207 Suppl 1: E94–102

    Google Scholar 

  4. Ryan TJ (1995) Lymphatics and adipose tissue. Clin Dermatol 13: 493–8

    Article  PubMed  CAS  Google Scholar 

  5. Bourlier V, Zakaroff-Girard A, Miranville A et al. (2008) Remodeling phenotype of human subcutaneous adipose tissue macrophages. Circulation 117: 806–15

    Article  PubMed  CAS  Google Scholar 

  6. Harvey NL, Srinivasan RS, Dillard ME et al. (2005) Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nat Genet 37: 1072–81

    Article  PubMed  CAS  Google Scholar 

  7. Miller NE, Michel CC, Nanjee MN et al. (2011) Secretion of adipokines by human adipose tissue in vivo: partitioning between capillary and lymphatic transport. Am J Physiol Endocrinol Metab 301: E659–67

    Article  PubMed  CAS  Google Scholar 

  8. Pond CM (2005) Adipose tissue and the immune system. Prostaglandins Leukot Essent Fatty Acids 73: 17–30

    Article  PubMed  CAS  Google Scholar 

  9. Bulow J, Astrup A, Christensen NJ, Kastrup J (1987) Blood flow in skin, subcutaneous adipose tissue and skeletal muscle in the forearm of normal man during an oral glucose load. Acta Physiol Scand 130: 657–61

    Article  PubMed  CAS  Google Scholar 

  10. Tobin L, Simonsen L, Bulow J (2010) Real-time contrast-enhanced ultrasound determination of microvascular blood volume in abdominal subcutaneous adipose tissue in man. Evidence for adipose tissue capillary recruitment. Clin Physiol Funct Imaging 30: 447–52

    Article  PubMed  CAS  Google Scholar 

  11. Beigneux AP (2010) GPIHBP1 and the processing of triglyceride-rich lipoproteins. Clin Lipidol 5: 575–582

    Article  PubMed  CAS  Google Scholar 

  12. Cao R, Brakenhielm E, Wahlestedt C et al. (2001) Leptin induces vascular permeability and synergistically stimulates angiogenesis with FGF-2 and VEGF. Proc Natl Acad Sci États-Unis 98: 6390–5

    Article  CAS  Google Scholar 

  13. Miranville A, Heeschen C, Sengenes C et al. (2004) Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation 110: 349–55

    Article  PubMed  CAS  Google Scholar 

  14. Koh YJ, Koh BI, Kim H et al. (2011) Stromal vascular fraction from adipose tissue forms profound vascular network through the dynamic reassembly of blood endothelial cells. Arterioscler Thromb Vasc Biol 31: 1141–50

    Article  PubMed  CAS  Google Scholar 

  15. Nunes SS, Greer KA, Stiening CM et al. (2010) Implanted microvessels progress through distinct neovascularization phenotypes. Microvasc Res 79: 10–20

    Article  PubMed  CAS  Google Scholar 

  16. Gealekman O, Guseva N, Hartigan C et al. (2011) Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation 123: 186–94

    Article  PubMed  Google Scholar 

  17. Ledoux S, Queguiner I, Msika S et al. (2008) Angiogenesis associated with visceral and subcutaneous adipose tissue in severe human obesity. Diabetes 57: 3247–57

    Article  PubMed  CAS  Google Scholar 

  18. Xue Y, Cao R, Nilsson D et al. (2008) FOXC2 controls Ang-2 expression and modulates angiogenesis, vascular patterning, remodeling, and functions in adipose tissue. Proc Natl Acad Sci États-Unis 105: 10167–72

    Article  CAS  Google Scholar 

  19. Maumus M, Peyrafitte JA, D’Angelo R et al. (2011) Native human adipose stromal cells: localization, morphology and phenotype. Int J Obes (Lond)

    Google Scholar 

  20. Traktuev DO, Merfeld-Clauss S, Li J et al. (2008) A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102: 77–85

    Article  PubMed  CAS  Google Scholar 

  21. Cao Y (2010) Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat Rev Drug Discov 9: 107–15

    Article  PubMed  CAS  Google Scholar 

  22. Christiaens V, Lijnen HR (2010) Angiogenesis and development of adipose tissue. Mol Cell Endocrinol 318: 2–9

    Article  PubMed  CAS  Google Scholar 

  23. Aoki N, Yokoyama R, Asai N et al. (2010) Adipocyte-derived microvesicles are associated with multiple angiogenic factors and induce angiogenesis in vivo and in vitro. Endocrinology 151: 2567–76

    Article  PubMed  CAS  Google Scholar 

  24. Bouloumie A, Drexler HC, Lafontan M, Busse R (1998) Leptin, the product of Ob gene, promotes angiogenesis. Circ Res 83: 1059–66

    Article  PubMed  CAS  Google Scholar 

  25. Liu J, Divoux A, Sun J et al. (2009) Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat Med 15: 940–5

    Article  PubMed  CAS  Google Scholar 

  26. Lolmede K, Durand de Saint Front V, Galitzky J, et al. (2003) Effects of hypoxia on the expression of proangiogenic factors in differentiated 3T3-F442A adipocytes. Int J Obes Relat Metab Disord 27: 1187–95

    Article  PubMed  CAS  Google Scholar 

  27. Villaret A, Galitzky J, Decaunes P et al. (2010) Adipose tissue endothelial cells from obese human subjects: differences among depots in angiogenic, metabolic, and inflammatory gene expression and cellular senescence. Diabetes 59: 2755–63

    Article  PubMed  CAS  Google Scholar 

  28. Xue Y, Petrovic N, Cao R et al. (2009) Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metab 9: 99–109

    Article  PubMed  CAS  Google Scholar 

  29. Kuo LE, Kitlinska JB, Tilan JU et al. (2007) Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat Med 13: 803–11

    Article  PubMed  CAS  Google Scholar 

  30. Crandall DL, Hausman GJ, Kral JG (1997) A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives. Microcirculation 4: 211–32

    Article  PubMed  CAS  Google Scholar 

  31. Han J, Lee JE, Jin J et al. (2011) The spatiotemporal development of adipose tissue. Development 138: 5027–37

    Article  PubMed  CAS  Google Scholar 

  32. Cho CH, Koh YJ, Han J et al. (2007) Angiogenic role of LYVE-1-positive macrophages in adipose tissue. Circ Res 100: e47–57

    Article  PubMed  CAS  Google Scholar 

  33. Neels JG, Thinnes T, Loskutoff DJ (2004) Angiogenesis in an in vivo model of adipose tissue development. Faseb J 18: 983–5

    PubMed  CAS  Google Scholar 

  34. Gealekman O, Burkart A, Chouinard M et al. (2008) Enhanced angiogenesis in obesity and in response to PPARgamma activators through adipocyte VEGF and ANGPTL4 production. Am J Physiol Endocrinol Metab 295: E1056–64

    Article  PubMed  CAS  Google Scholar 

  35. Hutley LJ, Herington AC, Shurety W et al. (2001) Human adipose tissue endothelial cells promote preadipocyte proliferation. Am J Physiol Endocrinol Metab 281: E1037–44

    PubMed  CAS  Google Scholar 

  36. Maumus M, Sengenes C, Decaunes P et al. (2008) Evidence of in situ proliferation of adult adipose tissue-derived progenitor cells: influence of fat mass microenvironment and growth. J Clin Endocrinol Metab 93: 4098–106

    Article  PubMed  CAS  Google Scholar 

  37. Rajashekhar G, Traktuev DO, Roell WC et al. (2008) IFATS collection: Adipose stromal cell differentiation is reduced by endothelial cell contact and paracrine communication: role of canonical Wnt signaling. Stem Cells 26: 2674–81

    Article  PubMed  Google Scholar 

  38. Sengenes C, Miranville A, Maumus M et al. (2007) Chemotaxis and differentiation of human adipose tissue CD34+/CD31− progenitor cells: role of stromal derived factor-1 released by adipose tissue capillary endothelial cells. Stem Cells 25: 2269–76

    Article  PubMed  CAS  Google Scholar 

  39. Planat-Benard V, Silvestre JS, Cousin B et al. (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109: 656–63

    Article  PubMed  Google Scholar 

  40. Karpe F, Fielding BA, Ilic V et al. (2002) Impaired postprandial adipose tissue blood flow response is related to aspects of insulin sensitivity. Diabetes 51: 2467–73

    Article  PubMed  CAS  Google Scholar 

  41. Wood IS, de Heredia FP, Wang B, Trayhurn P (2009) Cellular hypoxia and adipose tissue dysfunction in obesity. Proc Nutr Soc 68: 370–7

    Article  PubMed  CAS  Google Scholar 

  42. Pasarica M, Sereda OR, Redman LM et al. (2009) Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 58: 718–25

    Article  PubMed  CAS  Google Scholar 

  43. Goossens GH, Bizzarri A, Venteclef N et al. (2011) Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation 124: 67–76

    Article  PubMed  CAS  Google Scholar 

  44. Tobin L, Simonsen L, Bulow J (2011) The dynamics of the microcirculation in the subcutaneous adipose tissue is impaired in the postprandial state in type 2 diabetes. Clin Physiol Funct Imaging 31: 458–63

    Article  PubMed  CAS  Google Scholar 

  45. Funada J, Dennis AL, Roberts R et al. (2011) Regulation of subcutaneous adipose tissue blood flow is related to measures of vascular and autonomic function. Clin Sci (Lond) 119: 313–22

    Article  Google Scholar 

  46. Sandqvist M, Strindberg L, Schmelz M et al. (2011) Impaired delivery of insulin to adipose tissue and skeletal muscle in obese women with postprandial hyperglycemia. J Clin Endocrinol Metab 96: E1320–4

    Article  PubMed  CAS  Google Scholar 

  47. Klimcakova E, Roussel B, Marquez-Quinones A et al. (2010) Worsening of obesity and metabolic status yields similar molecular adaptations in human subcutaneous and visceral adipose tissue: decreased metabolism and increased immune response. J Clin Endocrinol Metab 96: E73–82

    Article  PubMed  Google Scholar 

  48. Hocking SL, Wu LE, Guilhaus M et al. (2011) Intrinsic depot-specific differences in the secretome of adipose tissue, preadipocytes, and adipose tissue-derived microvascular endothelial cells. Diabetes 59: 3008–16

    Article  Google Scholar 

  49. Duffaut C, Zakaroff-Girard A, Bourlier V et al. (2009) Interplay between human adipocytes and T lymphocytes in obesity: CCL20 as an adipochemokine and T lymphocytes as lipogenic modulators. Arterioscler Thromb Vasc Biol 29: 1608–14

    Article  PubMed  CAS  Google Scholar 

  50. Hanzu FA, Palomo M, Kalko SG et al. (2011) Translational evidence of endothelial damage in obese individuals: inflammatory and prothrombotic responses. J Thromb Haemost 9: 1236–45

    Article  PubMed  CAS  Google Scholar 

  51. Hagberg CE, Falkevall A, Wang X et al. (2010) Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464: 917–21

    Article  PubMed  CAS  Google Scholar 

  52. Sengenes C, Miranville A, Lolmede K et al. (2007) The role of endothelial cells in inflamed adipose tissue. J Intern Med 262: 415–21

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bouloumié .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Paris

About this chapter

Cite this chapter

Bouloumié, A., Galitzky, J. (2013). L’angiogenèse dans le tissu adipeux. In: Physiologie et physiopathologie du tissu adipeux. Springer, Paris. https://doi.org/10.1007/978-2-8178-0332-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0332-6_3

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0331-9

  • Online ISBN: 978-2-8178-0332-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics