Skip to main content

Impact des cytokines pro-inflammatoires sur la signalisation insulinique de l’adipocyte

  • Chapter
Physiologie et physiopathologie du tissu adipeux

Résumé

Au cours de l’obésité, l’inflammation métabolique qui se développe dans le tissu adipeux (TA) va conduire à la production de cytokines inflammatoires (Chapitre Inflammation du tissu adipeux au cours de l’obésité), qui vont activer différentes voies de signalisation qui interfèrent avec la signalisation et les effets métaboliques de l’insuline au sein des adipocytes. Cette résistance à l’action de l’insuline va contribuer aux dysfonctions du TA et au développement de l’insulinorésistance systémique observée lors de l’obésité et du diabète de type 2. Dans ce chapitre, nous décrirons les principaux mécanismes moléculaires utilisés par les cytokines inflammatoires pour diminuer la signalisation insulinique. Nous discuterons également comment le blocage de ces mécanismes peut améliorer la sensibilité à l’insuline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7: 85–96

    Article  PubMed  CAS  Google Scholar 

  2. White MF (2002) IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 283: E413–22

    PubMed  CAS  Google Scholar 

  3. De Luca C, Olefsky JM (2008) Inflammation and insulin resistance. FEBS Lett 582: 97–105

    Article  PubMed  Google Scholar 

  4. Ovadia H, Haim Y, Nov O et al. (2011) Increased adipocyte S-nitrosylation targets anti-lipolytic action of insulin: relevance to adipose tissue dysfunction in obesity. J Biol Chem 286: 30433–43

    Article  PubMed  CAS  Google Scholar 

  5. Lebrun P, Van Obberghen E (2008) SOCS proteins causing trouble in insulin action. Acta Physiol (Oxf) 192: 29–36

    Article  CAS  Google Scholar 

  6. Rieusset J, Bouzakri K, Chevillotte E et al. (2004) Suppressor of cytokine signaling 3 expression and insulin resistance in skeletal muscle of obese and type 2 diabetic patients. Diabetes 53: 2232–41

    Article  PubMed  CAS  Google Scholar 

  7. Shi H, Cave B, Inouye K et al. (2006) Overexpression of Suppressor of Cytokine Signaling 3 in Adipose Tissue Causes Local but Not Systemic Insulin Resistance. Diabetes 55: 699–707

    Article  PubMed  CAS  Google Scholar 

  8. Howard JK, Cave BJ, Oksanen LJ et al. (2004) Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3. Nat Med 10: 734–8

    Article  PubMed  CAS  Google Scholar 

  9. Mori H, Hanada R, Hanada T et al. (2004) Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat Med 10: 739–43

    Article  PubMed  CAS  Google Scholar 

  10. Ueki K, Kadowaki T, Kahn CR (2005) Role of suppressors of cytokine signaling SOCS-1 and SOCS-3 in hepatic steatosis and the metabolic syndrome. Hepatol Res 33: 185–92

    Article  PubMed  CAS  Google Scholar 

  11. Torisu T, Sato N, Yoshiga D et al. (2007) The dual function of hepatic SOCS3 in insulin resistance in vivo. Genes Cells 12: 143–54

    Article  PubMed  CAS  Google Scholar 

  12. Lebrun P, Cognard E, Bellon-Paul R et al. (2009) Constitutive expression of suppressor of cytokine signalling-3 in skeletal muscle leads to reduced mobility and overweight in mice. Diabetologia 52: 2201–12

    Article  PubMed  CAS  Google Scholar 

  13. Emanuelli B, Macotela Y, Boucher J, Ronald Kahn C (2008) SOCS-1 deficiency does not prevent diet-induced insulin resistance. Biochem Biophys Res Commun 377: 447–52

    Article  PubMed  CAS  Google Scholar 

  14. Sachithanandan N, Graham KL, Galic S et al. (2011) Macrophage deletion of SOCS1 increases sensitivity to LPS and palmitic acid and results in systemic inflammation and hepatic insulin resistance. Diabetes 60:2023–31

    Article  PubMed  CAS  Google Scholar 

  15. Tanti JF, Jager J (2009) Cellular mechanisms of insulin resistance: role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation. Curr Opin Pharmacol 9: 753–62

    Article  PubMed  CAS  Google Scholar 

  16. Tanti JF, Gremeaux T, van Obberghen E, Le Marchand-Brustel Y (1994) Serine/threonine phosphorylation of insulin receptor substrate 1 modulates insulin receptor signaling. J Biol Chem 269: 6051–7.

    PubMed  CAS  Google Scholar 

  17. Langlais P, Yi Z, Finlayson J et al. (2011) Global IRS-1 phosphorylation analysis in insulin resistance. Diabetologia 54: 2878–89

    Article  PubMed  CAS  Google Scholar 

  18. Morino K, Neschen S, Bilz S et al. (2008) Muscle-specific IRS-1 Ser→Ala transgenic mice are protected from fat-induced insulin resistance in skeletal muscle. Diabetes 57: 2644–51

    Article  PubMed  CAS  Google Scholar 

  19. Bashan N, Dorfman K, Tarnovscki T et al. (2007) Mitogen-activated protein kinases, inhibitory-kappaB kinase, and insulin signaling in human omental versus subcutaneous adipose tissue in obesity. Endocrinology 148: 2955–62

    Article  PubMed  CAS  Google Scholar 

  20. Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11: 98–107

    Article  PubMed  CAS  Google Scholar 

  21. Lee DF, Kuo HP, Chen CT et al. (2008) IKKbeta suppression of TSC1 function links the mTOR pathway with insulin resistance. Int J Mol Med 22: 633–8

    PubMed  CAS  Google Scholar 

  22. Pende M, Kozma SC, Jaquet M et al. (2000) Hypoinsulinaemia, glucose intolerance and diminished β-cell size in S6K1-deficient mice. Nature 408: 994–7

    Article  PubMed  CAS  Google Scholar 

  23. Polak P, Cybulski N, Feige JN et al. (2008) Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab 8: 399–410

    Article  PubMed  CAS  Google Scholar 

  24. Zabolotny JM, Kim YB, Welsh LA et al. (2008) Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo. J Biol Chem 283: 14230–41

    Article  PubMed  CAS  Google Scholar 

  25. Arkan MC, Hevener AL, Greten FR et al. (2005) IKK-beta links inflammation to obesityinduced insulin resistance. Nat Med 11: 191–8

    Article  PubMed  CAS  Google Scholar 

  26. Cai D, Yuan M, Frantz DF et al. (2005) Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 11: 183–90

    Article  PubMed  CAS  Google Scholar 

  27. Zhang X, Zhang G, Zhang H et al. (2008) Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 135: 61–73

    Article  PubMed  CAS  Google Scholar 

  28. Chiang SH, Bazuine M, Lumeng CN et al. (2009) The protein kinase IKKepsilon regulates energy balance in obese mice. Cell 138: 961–75

    Article  PubMed  CAS  Google Scholar 

  29. Goldfine AB, Fonseca V, Shoelson SE (2011) Therapeutic approaches to target inflammation in type 2 diabetes. Clin Chem 57: 162–7

    Article  PubMed  CAS  Google Scholar 

  30. Keshet Y, Seger R (2010) The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol 661: 3–38

    Article  PubMed  CAS  Google Scholar 

  31. Hirosumi J, Tuncman G, Chang L et al. (2002) A central role for JNK in obesity and insulin resistance. Nature 420: 333–6

    Article  PubMed  CAS  Google Scholar 

  32. Bouzakri K, Roques M, Gual P et al. (2003) Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes. Diabetes 52: 1319–25

    Article  PubMed  CAS  Google Scholar 

  33. Jager J, Gremeaux T, Cormont M et al. (2007) Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology 148: 241–51

    Article  PubMed  CAS  Google Scholar 

  34. Liu HY, Collins QF, Xiong Y et al. (2007) Prolonged treatment of primary hepatocytes with oleate induces insulin resistance through p38 mitogen-activated protein kinase. J Biol Chem 282: 14205–12

    Article  PubMed  CAS  Google Scholar 

  35. Jaeschke A, Czech MP, Davis RJ (2004) An essential role of the JIP1 scaffold protein for JNK activation in adipose tissue. Genes Dev 18:1976–80

    Article  PubMed  CAS  Google Scholar 

  36. Waeber G, Delplanque J, Bonny C et al. (2000) The gene MAPK8IP1, encoding isletbrain-1, is a candidate for type 2 diabetes. Nat Genet 24: 291–5

    Article  PubMed  CAS  Google Scholar 

  37. Solinas G, Vilcu C, Neels JG et al. (2007) JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell Metab 6: 386–97

    Article  PubMed  CAS  Google Scholar 

  38. Vallerie SN, Furuhashi M, Fucho R, Hotamisligil GS (2008) A predominant role for parenchymal c-Jun amino terminal kinase (JNK) in the regulation of systemic insulin sensitivity. PLoS ONE 3: e3151

    Article  PubMed  Google Scholar 

  39. Zhang X, Xu A, Chung SK et al. (2011) Selective inactivation of c-Jun NH2-terminal kinase in adipose tissue protects against diet-induced obesity and improves insulin sensitivity in both liver and skeletal muscle in mice. Diabetes 60: 486–95

    Article  PubMed  CAS  Google Scholar 

  40. Sabio G, Davis RJ (2010) cJun NH2-terminal kinase 1 (JNK1): roles in metabolic regulation of insulin resistance. Trends Biochem Sci 35: 490–6

    Article  PubMed  CAS  Google Scholar 

  41. Hull-Thompson J, Muffat J, Sanchez D et al. (2009) Control of metabolic homeostasis by stress signaling is mediated by the lipocalin NLaz. PLoS Genet 5: e1000460

    Article  PubMed  Google Scholar 

  42. Nakatani Y, Kaneto H, Kawamori D et al. (2004) Modulation of the JNK pathway in liver affects insulin resistance status. J Biol Chem 279: 45803–9

    Article  PubMed  CAS  Google Scholar 

  43. Bost F, Aouadi M, Caron L et al. (2005) The extracellular signal-regulated kinase isoform ERK1 is specifically required for in vitro and in vivo adipogenesis. Diabetes 54: 402–11

    Article  PubMed  CAS  Google Scholar 

  44. Lee SJ, Pfluger PT, Kim JY et al. (2010) A functional role for the p62-ERK1 axis in the control of energy homeostasis and adipogenesis. EMBO Rep 11: 226–32

    Article  PubMed  CAS  Google Scholar 

  45. Emanuelli B, Eberle D, Suzuki R, Kahn CR (2008) Overexpression of the dual-specificity phosphatase MKP-4/DUSP-9 protects against stress-induced insulin resistance. Proc Natl Acad Sci États-Unis 105: 3545–50

    Article  CAS  Google Scholar 

  46. Jager J, Corcelle V, Gremeaux T et al. (2011) Deficiency in the extracellular signalregulated kinase 1 (ERK1) protects leptin-deficient mice from insulin resistance without affecting obesity. Diabetologia 54: 180–9

    Article  PubMed  CAS  Google Scholar 

  47. Jager J, Gremeaux T, Gonzalez T et al. (2010) The Tpl2 kinase is up-regulated in adipose tissue in obesity and may mediate IL-1ta and TNF-alpha∼ effects on ERK activation and lipolysis. Diabetes 59:61–70

    Google Scholar 

  48. Perfield JW, 2nd, Lee Y, Shulman GI et al. (2011) Tumor progression locus 2 (TPL2) regulates obesity-associated inflammation and insulin resistance. Diabetes 60: 1168–76

    Article  PubMed  CAS  Google Scholar 

  49. Gantke T, Sriskantharajah S, Ley SC (2011) Regulation and function of TPL-2, an IkappaB kinase-regulated MAP kinase kinase kinase. Cell Res Dec 7 [Epub ahead of print]: 1–15

    Google Scholar 

  50. Yang R, Trevillyan JM (2008) c-Jun N-terminal kinase pathways in diabetes. Int J Biochem Cell Biol 40: 2702–6

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-F. Tanti .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Paris

About this chapter

Cite this chapter

Tanti, JF., Jager, J., Marchand-Brustel, Y.L. (2013). Impact des cytokines pro-inflammatoires sur la signalisation insulinique de l’adipocyte. In: Physiologie et physiopathologie du tissu adipeux. Springer, Paris. https://doi.org/10.1007/978-2-8178-0332-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0332-6_21

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0331-9

  • Online ISBN: 978-2-8178-0332-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics