Skip to main content

Résumé

Parallèlement à sa fonction de stockage et de mobilisation de lipides, le tissu adipeux (TA) sécrète de nombreuses molécules bioactives (peptides, glycoprotéines, acides gras et leurs dérivés, phospholipides), nommées «adipokines» et qui sont de plus en plus suspectées de participer à la régulation de la balance énergétique et à l’étiologie des pathologies associées à l’obésité (diabète, hypertension, athérosclérose…). À notre avis, l’utilisation du terme «adipokines» devrait être débattue. Il provient de la contraction d’adipocytokines, dans lequel «cyto-» (cellule) et «-kinos» (mouvement) donnent cytokines, correspondant à une classe de petites molécules sécrétées par les cellules immunitaires (lymphocytes, macrophages, cellules gliales…) et agissant à distance. Les cytokines ont une fonction de messager, elles sont généralement peu abondantes dans le sang en situation normale, mais leur concentration augmente très fortement en conditions traumatiques ou en cas d’infection. Au regard de ces définitions, peu d’adipokines semblent pouvoir être considérées comme des cytokines. Néanmoins, comme les cytokines, l’activité biologique des «adipokines» s’exerce de façon locale (paracrine, autocrine) ou par voie systémique (endocrine). Initialement les adipokines étaient considérées comme des molécules sécrétées uniquement par le TA. Cette notio est d’ores et déjà obsolète car, outre la leptine et l’adiponectine, la grande majorité des adipokines sont également produites par d’autres organes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Fukuhara A, Matsuda M, Nishizawa M et al. (2005) Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 307: 426–30

    Article  PubMed  CAS  Google Scholar 

  2. Samal B, Sun Y, Stearns G et al. (1994) Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol Cell Biol 14: 1431–37

    PubMed  CAS  Google Scholar 

  3. Ognjanovic S, Bao S, Yamamoto SY et al. (2001) Genomic organization of the gene coding for human pre-B-cell colony enhancing factor and expression in human fetal membranes. J Mol Endocrinol 26: 107–17

    Article  PubMed  CAS  Google Scholar 

  4. Revollo JR, Körner A, Mills KF et al. (2007) Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab 6: 363–75

    Article  PubMed  CAS  Google Scholar 

  5. Wanecq E, Prévot D, Carpéné C (2009) Lack of direct insulin-like action of visfatin/ Nampt/PBEF1 in human adipocytes. J Physiol Biochem 65: 351–60

    Article  PubMed  CAS  Google Scholar 

  6. Harasim E, Chabowski A, Górski J (2011) Lack of downstream insulin-mimetic effects of visfatin/eNAMPT on glucose and fatty acid metabolism in skeletal muscles. Acta Physiol (Oxf) 202: 21–28

    Article  CAS  Google Scholar 

  7. Fukuhara A, Matsuda M, Nishizawa M et al. (2007) Retraction. Science 318: 565

    Article  CAS  Google Scholar 

  8. Caton PW, Kieswich J, Yaqoob MM et al. (2011) Nicotinamide mononucleotide protects against pro-inflammatory cytokine-mediated impairment of mouse islet function. Diabetologia 54: 3083–92

    Article  PubMed  CAS  Google Scholar 

  9. Hara N, Yamada K, Shibata T et al. (2011) Nicotinamide phosphoribosyltransferase/ visfatin does not catalyze nicotinamide mononucleotide formation in blood plasma. PLoS One 6: e22781

    Article  PubMed  CAS  Google Scholar 

  10. Romacho T, Azcutia V, Vázquez-Bella M et al. (2009) Extracellular PBEF/NAMPT/visfatin activates pro-inflammatory signalling in human vascular smooth muscle cells through nicotinamide phosphoribosyltransferase activity. Diabetologia 52: 2455–63

    Article  PubMed  CAS  Google Scholar 

  11. Malam Z, Parodo J, Waheed F et al. (2011) Pre-B cell colony-enhancing factor (PBEF/Nampt/visfatin) primes neutrophils for augmented respiratory burst activity through partial assembly of the NADPH oxidase. J Immunol 186: 6474–84

    Article  PubMed  CAS  Google Scholar 

  12. Friebe D, Neef M, Kratzsch J et al. (2011) Leucocytes are a major source of circulating nicotinamide phosphoribosyltransferase (NAMPT)/pre-B cell colony (PBEF)/visfatin linking obesity and inflammation in humans. Diabetologia 54: 1200–11

    Article  PubMed  CAS  Google Scholar 

  13. Stofkova A (2010) Resistin and visfatin: regulators of insulin sensitivity, inflammation and immunity. Endocr Regul 44: 25–36.

    Article  PubMed  CAS  Google Scholar 

  14. Mercader J, Granados N, Caimari A et al. (2008) Retinol-binding protein 4 and nicotinamide phosphoribosyltransferase/visfatin in rat obesity models. Horm Metab Res 40: 467–72

    Article  PubMed  CAS  Google Scholar 

  15. Sommer G, Garten A, Petzold S et al. (2008) Visfatin/PBEF/Nampt: structure, regulation and potential function of a novel adipokine. Clin Sci (Lond) 115: 13–23

    Article  CAS  Google Scholar 

  16. Lorente-Cebrián S, Bustos M, Marti A et al. (2009) Eicosapentaenoic acid stimulates AMP-activated protein kinase and increases visfatin secretion in cultured murine adipocytes. Clin Sci (Lond) 117: 243–49

    Article  Google Scholar 

  17. Haider DG, Schaller G, Kapiotis S et al. (2006) The release of the adipocytokine visfatin is regulated by glucose and insulin. Diabetologia 49: 1909–14

    Article  PubMed  CAS  Google Scholar 

  18. Mayi TH, Duhem C, Copin C et al. (2010) Visfatin is induced by peroxisome proliferatoractivated receptor gamma in human macrophages. FEBS J 277: 3308–20

    Article  PubMed  Google Scholar 

  19. Okudaira S, Yukiura H, Aoki J (2010) Biological roles of lysophosphatidic acid signaling through its production by autotaxin. Biochimie 92: 698–706

    Article  PubMed  CAS  Google Scholar 

  20. Stracke ML, Krutzsch HC, Unsworth EJ et al. (1992) Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. J Biol Chem 267: 2524–9

    PubMed  CAS  Google Scholar 

  21. Van Meeteren LA, Ruurs P, Stortelers C et al. (2006) Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol Cell Biol 26: 5015–22

    Article  PubMed  Google Scholar 

  22. Ferry G, Tellier E, Try A et al. (2003) Autotaxin is released from adipocytes, catalyzes lysophosphatidic acid synthesis, and activates preadipocyte proliferation. Up-regulated expression with adipocyte differentiation and obesity. J Biol Chem 278: 18162–9

    Article  PubMed  CAS  Google Scholar 

  23. Boucher J, Quilliot D, Praderes JP et al. (2005) Potential involvement of adipocyte insulin resistance in obesity-associated up-regulation of adipocyte lysophospholipase D/autotaxin expression. Diabetologia 48: 569–77

    Article  PubMed  CAS  Google Scholar 

  24. Dusaulcy R, Rancoule C, Gres S et al. (2011) Adipose-specific disruption of autotaxin enhances nutritional fattening and reduces plasma lysophosphatidic acid. J Lipid Res 52: 1247–55

    Article  PubMed  CAS  Google Scholar 

  25. Simon MF, Daviaud D, Pradere JP et al. (2005) Lysophosphatidic acid inhibits adipocyte differentiation via lysophosphatidic acid 1 receptor-dependent down-regulation of peroxisome proliferator-activated receptor gamma2. J Biol Chem 280: 14656–62

    Article  PubMed  CAS  Google Scholar 

  26. Contos JJ, Fukushima N, Weiner JA et al. (2000) Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proc Natl Acad Sci États-unis 97: 13384–9

    Article  CAS  Google Scholar 

  27. Dusaulcy R, Daviaud D, Pradere JP et al. (2009) Altered food consumption in mice lacking lysophosphatidic acid receptor-1. J Physiol Biochem 65: 345–50

    Article  PubMed  CAS  Google Scholar 

  28. Becerra SP, Sagasti A, Spinella P et al. (1995) Pigment epithelium-derived factor behaves like a noninhibitory serpin. Neurotrophic activity does not require the serpin reactive loop. J Biol Chem 270: 25992–9

    Article  PubMed  CAS  Google Scholar 

  29. Rychli K, Huber K, Wojta J (2009) Pigment epithelium-derived factor (PEDF) as a therapeutic target in cardiovascular disease. Expert Opin Ther Targets 13: 1295–302

    Article  PubMed  CAS  Google Scholar 

  30. Kratchmarova I, Kalume DE, Blagoev B et al. (2002) A proteomic approach for identification of secreted proteins during the differentiation of 3T3-L1 preadipocytes to adipocytes. Mol Cell Proteomics 1: 213–22

    Article  PubMed  CAS  Google Scholar 

  31. Zvonic S, Lefevre M, Kilroy G et al. (2007) Secretome of primary cultures of human adipose-derived stem cells: modulation of serpins by adipogenesis. Mol Cell Proteomics 6: 18–28

    PubMed  CAS  Google Scholar 

  32. Sabater M, Moreno-Navarrete JM, Ortega FJ et al. (2010) Circulating pigment epithelium-derived factor levels are associated with insulin resistance and decrease after weight loss. J Clin Endocrinol Metab 95: 4720–8

    Article  PubMed  CAS  Google Scholar 

  33. Crowe S, Wu LE, Economou C et al. (2009) Pigment epithelium-derived factor contributes to insulin resistance in obesity. Cell Metab 10: 40–7

    Article  PubMed  CAS  Google Scholar 

  34. Chung C, Doll JA, Stellmach VM et al. (2008) Pigment epithelium-derived factor is an angiogenesis and lipid regulator that activates peroxisome proliferator-activated receptor alpha. Adv Exp Med Biol 617: 591–7

    Article  PubMed  CAS  Google Scholar 

  35. Borg ML, Andrews ZB, Duh EJ et al. (2011) Pigment epithelium-derived factor regulates lipid metabolism via adipose triglyceride lipase. Diabetes 60: 1458–66

    Article  PubMed  CAS  Google Scholar 

  36. Notari L, Baladron V, Aroca-Aguilar JD et al. (2006) Identification of a lipase-linked cell membrane receptor for pigment epithelium-derived factor. J Biol Chem 281: 38022–37

    Article  PubMed  CAS  Google Scholar 

  37. Zanotti G, Berni R (2004) Plasma retinol-binding protein: structure and interactions with retinol, retinoids, and transthyretin. Vitam Horm 69: 271–95

    Article  PubMed  CAS  Google Scholar 

  38. Tsutsumi C, Okuno M, Tannous L et al. (1992) Retinoids and retinoid-binding protein expression in rat adipocytes. J Biol Chem 267: 1805–10

    PubMed  CAS  Google Scholar 

  39. Zovich DC, Orologa A, Okuno M et al. (1992) Differentiation-dependent expression of retinoid-binding proteins in BFC-1 beta adipocytes. J Biol Chem 267: 13884–9

    PubMed  CAS  Google Scholar 

  40. Yang Q, Graham TE, Mody N et al. (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436: 356–62

    Article  PubMed  CAS  Google Scholar 

  41. Abel ED, Peroni O, Kim JK et al. (2001) Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409: 729–33

    Article  PubMed  CAS  Google Scholar 

  42. Graham TE, Yang Q, Bluher M et al. (2006) Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med 354: 2552–63

    Article  PubMed  CAS  Google Scholar 

  43. Janke J, Engeli S, Boschmann M et al. (2006) Retinol-binding protein 4 in human obesity. Diabetes 55: 2805–10

    Article  PubMed  CAS  Google Scholar 

  44. Kos K, Wong S, Tan BK et al. (2011) Human RBP4 adipose tissue expression is gender specific and influenced by leptin. Clin Endocrinol (Oxf) 74: 197–205

    Article  CAS  Google Scholar 

  45. Fernandez-Real JM, Moreno JM, Ricart W (2008) Circulating retinol-binding protein-4 concentration might reflect insulin resistance-associated iron overload. Diabetes 57: 1918–25

    Article  PubMed  CAS  Google Scholar 

  46. Sivaprasadarao A, Findlay JB (1988) The interaction of retinol-binding protein with its plasma-membrane receptor. Biochem J 255: 561–9

    PubMed  CAS  Google Scholar 

  47. Ost A, Danielsson A, Liden M et al. (2007) Retinol-binding protein-4 attenuates insulininduced phosphorylation of IRS1 and ERK1/2 in primary human adipocytes. Faseb J 21: 3696–704

    Article  PubMed  Google Scholar 

  48. Steppan CM, Bailey ST, Bhat S et al. (2001) The hormone resistin links obesity to diabetes. Nature 409: 307–12

    Article  PubMed  CAS  Google Scholar 

  49. Patel SD, Rajala MW, Rossetti L et al. (2004) Disulfide-dependent multimeric assembly of resistin family hormones. Science 304: 1154–58

    Article  PubMed  CAS  Google Scholar 

  50. Mazaki-Tovi S, Kusanovic JP, Vaisbuch E et al. Resistin in amniotic fluid. In: Preedy, VR, Hunter R J (2011) Adipokines. CRC Press, NY: 404–418

    Chapter  Google Scholar 

  51. Daquinag AC, Zhang Y, Amaya-Manzanares F et al. (2011) An isoform of decorin is a resistin receptor on the surface of adipose progenitor cells. Cell Stem Cell 9: 74–86

    Article  PubMed  CAS  Google Scholar 

  52. Bozaoglu K, Bolton K, McMillan J et al. (2007) Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 148: 4687–94

    Article  PubMed  CAS  Google Scholar 

  53. Roh SG, Song SH, Choi KC et al. (2007) Chemerin—a new adipokine that modulates adipogenesis via its own receptor. Biochem Biophys Res Commun 362: 1013–18

    Article  PubMed  CAS  Google Scholar 

  54. Takahashi M, Okimura Y, Iguchi G et al. (2011) Chemerin regulates β-cell function in mice. Scientific Reports 1

    Google Scholar 

  55. Takahashi M, Takahashi Y, Takahashi K et al. (2008) Chemerin enhances insulin signaling and potentiates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. FEBS Lett 582: 573–78

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-S. Saulnier-Blache .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Paris

About this chapter

Cite this chapter

Carpéné, C., Saulnier-Blache, JS. (2013). Quelques nouvelles des «adipocrines». In: Physiologie et physiopathologie du tissu adipeux. Springer, Paris. https://doi.org/10.1007/978-2-8178-0332-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0332-6_15

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0331-9

  • Online ISBN: 978-2-8178-0332-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics