Skip to main content

Le tissu adipeux : stockage, source et cible des polluants

  • Chapter

Résumé

Initialement considéré comme un tissu de «stockage», relativement passif, cantonné aux fonctions physiques et énergétiques, le tissu adipeux (TA) s’est vu progressivement attribuer de nouvelles fonctions physiologiques «nobles» notamment dans le domaine de la régulation métabolique et endocrinienne et a gagné ainsi en considération. L’intérêt pour ce tissu se manifeste tout autant en pathologie puisque sa contribution aux pathogénies de l’obésité et de nombreuses maladies métaboliques ou systémiques est à présent bien reconnue. Nous proposons dans ce chapitre de décrire et de discuter d’une fonction longtemps passée inaperçue du TA: la fonction toxicologique. Le terme de fonction toxicologique recouvre en réalité plusieurs notions: la contribution à la défense de l’organisme contre les toxiques, un rôle de source endogène de toxiques plutôt délétère et, enfin, une situation de cible des toxiques expliquant une partie de leur pathogénie. Cette nouvelle fonction que nous proposons n’est certainement pas aussi étayée que les autres fonctions de ce tissu, mais elle suscite de plus en plus d’intérêt, de travaux et de discussions.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426: 895–9

    Article  PubMed  CAS  Google Scholar 

  2. Morel Y, Barouki R (1999) Repression of gene expression by oxidative stress. Biochem J 342 Pt 3: 481–96

    Article  PubMed  CAS  Google Scholar 

  3. Morel Y, Coumoul X, Nalpas A, Barouki R (2000) Nuclear factor I/CCAAT box transcription factor trans-activating domain is a negative sensor of cellular stress. Mol Pharmacol 58: 1239–46

    PubMed  CAS  Google Scholar 

  4. Semenza, G L (2001) HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107: 1–3

    Article  PubMed  CAS  Google Scholar 

  5. Barouki R (2010) Linking long-term toxicity of xeno-chemicals with short-term biological adaptation. Biochimie 92: 1222–6.

    Article  PubMed  CAS  Google Scholar 

  6. Pelletier C, Imbeault P, Tremblay A (2003) Energy balance and pollution by organochlorines and polychlorinated biphenyls. Obes Rev 4: 17–24

    Article  PubMed  CAS  Google Scholar 

  7. Hue O, Marcotte J, Berrigan F et al. (2007) Plasma concentration of organochlorine compounds is associated with age and not obesity. Chemosphere 67: 1463–7

    Article  PubMed  CAS  Google Scholar 

  8. Geyer HJ, Schramm KW, Scheunert I et al. (1997) Considerations on genetic and environmental factors that contribute to resistance or sensitivity of mammals including humans to toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Part 1: Genetic factors affecting the toxicity of TCDD. Ecotoxicol Environ Saf 36: 213–30

    Article  PubMed  CAS  Google Scholar 

  9. Lassiter RR, Hallam TG (1990) Survival of the fattest: Implications for acute effects of lipophilic chemicals on aquatic populations. Environ Toxicol. Chem: 585–95

    Google Scholar 

  10. DeVito MJ, Ross DG, Dupuy AE Jr et al. (1998) Dose-response relationships for disposition and hepatic sequestration of polyhalogenated dibenzo-p-dioxins, dibenzofurans, and biphenyls following subchronic treatment in mice. Toxicol Sci 46: 223–34

    PubMed  CAS  Google Scholar 

  11. Emond C, Birnbaum LS, DeVito MJ (2006) Use of a physiologically based pharmacokinetic model for rats to study the influence of body fat mass and induction of CYP1A2 on the pharmacokinetics of TCDD. Environ Health Perspect 114: 1394–400

    Article  PubMed  CAS  Google Scholar 

  12. Hue O, Marcotte J, Berrigan F et al. (2006) Increased plasma levels of toxic pollutants accompanying weight loss induced by hypocaloric diet or by bariatric surgery. Obes Surg 16: 1145–54

    Article  PubMed  Google Scholar 

  13. Kim MJ, Marchand P, Henegar C et al. (2011) Fate and complex pathogenic effects of dioxins and polychlorinated biphenyls in obese subjects before and after drastic weight loss. Environ Health Perspect 119: 377–83

    Article  PubMed  CAS  Google Scholar 

  14. Iida T, Hirakawa H, Matsueda T et al. (1999) Polychlorinated dibenzo-p-dioxins and related compounds in breast milk of Japanese primiparas and multiparas. Chemosphere 38: 2461–6

    Article  PubMed  CAS  Google Scholar 

  15. Jandacek RJ, Anderson N, Liu M et al. (2005) Effects of yo-yo diet, caloric restriction, and olestra on tissue distribution of hexachlorobenzene. Am J Physiol Gastrointest Liver Physiol 288: G292–9

    Article  PubMed  CAS  Google Scholar 

  16. Debier C, Chalon C, Le Boeuf BJ et al. (2006) Mobilization of PCBs from blubber to blood in northern elephant seals (Mirounga angustirostris) during the post-weaning fast. Aquat Toxicol 80: 149–57

    Article  PubMed  CAS  Google Scholar 

  17. Imbeault P, Tremblay A, Simoneau JA, Joanisse DR (2002) Weight loss-induced rise in plasma pollutant is associated with reduced skeletal muscle oxidative capacity. Am J Physiol Endocrinol Metab 282: E574–9

    PubMed  CAS  Google Scholar 

  18. Lee DH, Lee IK, Jin SH et al. (2007) Association between serum concentrations of persistent organic pollutants and insulin resistance among nondiabetic adults: results from the National Health and Nutrition Examination Survey 1999–2002. Diabetes Care 30: 622–8

    Article  PubMed  CAS  Google Scholar 

  19. Kern PA, Dicker-Brown A, Said ST et al. (2002) The stimulation of tumor necrosis factor and inhibition of glucose transport and lipoprotein lipase in adipose cells by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Metabolism 51: 65–8

    Article  PubMed  CAS  Google Scholar 

  20. Marchand A, Tomkiewicz C, Marchandeau JP et al. (2005) 2,3,7,8-Tetrachlorodibenzop-dioxin Induces Insulin-Like Growth Factor Binding Protein-1 Gene Expression and Counteracts the Negative Effect of Insulin. Mol Pharmacol 67:444–52

    Article  PubMed  CAS  Google Scholar 

  21. Stahl BU, Beer DG, Weber LW, Rozman K (1993) Reduction of hepatic phosphoenolpyruvate carboxykinase (PEPCK) activity by 2,3,7,8-tetrachlorodibenzop-dioxin (TCDD) is due to decreased mRNA levels. Toxicology 79: 81–95

    Article  PubMed  CAS  Google Scholar 

  22. Kim MJ, Pelloux V, Guyot E et al. (2012) Inflammatory Pathway Genes belong to Major Targets of Persistent Organic Pollutants in Adipose Cells. Environ Health Perspect. 2012 Jan 19._[Epub ahead of print]

    Google Scholar 

  23. Remillard RB, Bunce NJ (2002) Linking dioxins to diabetes: epidemiology and biologic plausibility. Environ Health Perspect 110: 853–8

    Article  PubMed  CAS  Google Scholar 

  24. Barouki R, Morel Y (2001) Repression of cytochrome P450 1A1 gene expression by oxidative stress: mechanisms and biological implications. Biochem Pharmacol 61: 511–6

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Barouki .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Paris

About this chapter

Cite this chapter

Barouki, R., Clément, K. (2013). Le tissu adipeux : stockage, source et cible des polluants. In: Physiologie et physiopathologie du tissu adipeux. Springer, Paris. https://doi.org/10.1007/978-2-8178-0332-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0332-6_11

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0331-9

  • Online ISBN: 978-2-8178-0332-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics