Skip to main content

Physiologie de la vascularisation intestinale

  • Chapter
  • 418 Accesses

Résumé

Le système vasculaire intestinal est l’un des plus adaptatifs du corps humain. Dix à 20 % du débit cardiaque global suffsent à vasculariser l’intestin à jeûn. En période post-prandiale, la part destinée à la vascularisation digestive peut représenter jusqu’à 35 % du débit cardiaque total, variant en fonction de la quantité, de l’heure et de la composition du bol alimentaire. En période de jeune, 30 % de la totalité du sang circulant sont localisés dans le système splanchnique. En situation d’hypovolémie, d’hémorragie, d’hémodialyse, ou d’insuffsance cardiaque, on observe une diminution du débit et de la quantité de ces réserves vasculaires splanchniques par mobilisation et redistribution vers les territoires cardiaques et cérébraux [1–4]. Cette remarquable adaptation du lit vasculaire intestinal aux nécessités de la digestion ou du maintien d’une stabilité hémodynamique est le résultat d’une étroite coopération entre les résistances de systèmes pré- et postcapillaires

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Bulkley GB, Kvietys PR, Perry MA, Granger DN (1983) Effects of cardiac tamponade on colonic hemodynamics and oxygen uptake. Am J Physiol 244(6): G604–G612

    PubMed  CAS  Google Scholar 

  2. Edouard AR, Degremont AC, Duranteau J, et al. (1994) Heterogeneous regional vascular responses to simulated transient hypovolemia in man. Intensive Care Med 20(6): 414–420

    Article  PubMed  CAS  Google Scholar 

  3. Schlichtig R, Kramer DJ, Pinsky MR (1991) Flow redistribution during progressive hemorrhage is a determinant of critical O2 delivery. J Appl Physiol 70(1): 169–178

    PubMed  CAS  Google Scholar 

  4. Yu AW, Nawab ZM, Barnes WE, et al. (1997) Splanchnic erythrocyte content decreases during hemodialysis: a new compensatory mechanism for hypovolemia. Kidney Int 51(6): 1986–1990

    Article  PubMed  CAS  Google Scholar 

  5. Folkow B (1967) Regional adjustments of intestinal blood fow. Gastroenterology 52(2): 423–432

    PubMed  CAS  Google Scholar 

  6. McMillan WD, McCarthy WJ, Bresticker MR, et al. (1995) Mesenteric artery bypass: objective patency determination. J Vasc Surg 21(5): 729–740; discussion 740-1

    Article  PubMed  CAS  Google Scholar 

  7. Rapp JH, Reilly LM, Qvarfordt PG, et al. (1986) Durability of endarterectomy and antegrade grafts in the treatment of chronic visceral ischemia. J Vasc Surg 3(5): 799–806

    PubMed  CAS  Google Scholar 

  8. Edwards AJ, Hamilton JD, Nichol WD, et al. (1970) Experience with coeliac axis compression syndrome. Br Med J 1(5692): 342–345

    Article  PubMed  CAS  Google Scholar 

  9. Hulten L, Jodal M, Lindhagen J, Lundgren O (1976) Colonic blood fow in cat and man as analyzed by an inert gas washout technique. Gastroenterology 70(1): 36–44

    PubMed  CAS  Google Scholar 

  10. Hulten L, Jodal M, Lindhagen J, Lundgren O (1976) Blood fow in the small intestine of cat and man as analyzed by an inert gas washout technique. Gastroenterology 70(1): 45–51

    PubMed  CAS  Google Scholar 

  11. Bergofsky EH (1964) Determination of Tissue O2 Tensions by Hollow Visceral Tonometers: Effect of Breathing Enriched O2 Mixtures. J Clin Invest 43: 193–200

    Article  PubMed  CAS  Google Scholar 

  12. Leevy CM, Mendenhall CL, Lesko W, Howard MM (1962) Estimation of hepatic blood fow with indocyanine green. J Clin Invest 41: 1169–1179

    Article  PubMed  CAS  Google Scholar 

  13. Shepherd AP, Riedel GL (1982) Continuous measurement of intestinal mucosal blood fow by laser-Doppler velocimetry. Am J Physiol 242(6): G668–G672

    PubMed  CAS  Google Scholar 

  14. Barthelmes D, Parviainen I, Vainio P, et al. (2009) Assessment of splanchnic blood fow using magnetic resonance imaging. Eur J Gastroenterol Hepatol 21(6): 693–700

    Article  PubMed  Google Scholar 

  15. Granger DN, Kvietys PR (1985) Recent advances in measurement of gastrointestinal blood fow. Gastroenterology 88(4): 1073–1076

    PubMed  CAS  Google Scholar 

  16. Hulten L, Lindhagen J, Lundgren O, et al. (1977) Regional intestinal blood fow in ulcerative colitis and Crohn’s disease. Gastroenterology 72(3): 388–396

    PubMed  CAS  Google Scholar 

  17. Folkow B, Neil E (1971) Circulation. Oxford University Press

    Google Scholar 

  18. Lundgren O (1985) The microcirculation of the gastrointestinal tract and the pancreas. In Renkin E, Michel C, eds. Handbook of Physiology, Washington DC: American Physiological Society

    Google Scholar 

  19. Desai TR, Sisley AC, Brown S, Gewertz BL (1996) Defning the critical limit of oxygen extraction in the human small intestine. J Vasc Surg 23(5): 832–837; discussion 838

    Article  PubMed  CAS  Google Scholar 

  20. Bulkley GB, Kvietys PR, Parks DA, et al. (1985) Relationship of blood fow and oxygen consumption to ischemic injury in the canine small intestine. Gastroenterology 89(4): 852–857

    PubMed  CAS  Google Scholar 

  21. Reilly PM, Bulkley GB (1993) Vasoactive mediators and splanchnic perfusion. Crit Care Med 21(2 Suppl):S55–S68

    Article  PubMed  CAS  Google Scholar 

  22. Jacobson ED, Pawlik WW (1994) Adenosine regulation of mesenteric vasodilation. Gastroenterology 107(4): 1168–1180

    PubMed  CAS  Google Scholar 

  23. Taylor LJ, Moneta G (1994) Intestinal Ischemia. In Porter JM, Taylor LM Jr (eds): Basic Data Underlying Clinical Decision Making in Vascular Surgery. St-Louis, Quality Medical Publishing p107–110

    Google Scholar 

  24. Biber B, Lundgren O, Svanvik J (1971) Studies on the intestinal vasodilatation observed after mechanical stimulation of the mucosa of the gut. Acta Physiol Scand 82(2): 177–190

    Article  PubMed  CAS  Google Scholar 

  25. Folkow B, Lewis DH, Lundgren O, et al. (1964) The Effect of Graded Vasoconstrictor Fibre Stimulation on the Intestinal Resistance and Capacitance Vessels. Acta Physiol Scand 61: 445–457

    Article  PubMed  CAS  Google Scholar 

  26. Hulten L (1969) Extrinsic nervous control of côlonic motility and blood fow. An experimental study in the cat. Acta Physiol Scand Suppl; 335: 1–116

    PubMed  CAS  Google Scholar 

  27. Kewenter J (1965) The vagal control of the jejunal and ileal motility and blood fow. Acta Physiol Scand suppl. 251: 65

    Google Scholar 

  28. Ross G (1973) Vascular effects of periarterial mesenteric nerve stimulation after adrenergic neurone blockade. Experientia 29(3): 289–290

    Article  PubMed  CAS  Google Scholar 

  29. McNeill JR, Stark RD, Greenway CV (1970) Intestinal vasoconstriction after hemorrhage: roles of vasopressin and angiotensin. Am J Physiol 219(5): 1342–1347

    PubMed  CAS  Google Scholar 

  30. den Ouden DT, Meinders AE (2005) Vasopressin: physiology and clinical use in patients with vasodilatory shock: a review. Neth J Med 63(1): 4–13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag France

About this chapter

Cite this chapter

Zerbib, P. (2012). Physiologie de la vascularisation intestinale. In: Pathologie vasculaire du tube digestif. Springer, Paris. https://doi.org/10.1007/978-2-8178-0276-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0276-3_2

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0275-6

  • Online ISBN: 978-2-8178-0276-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics