Skip to main content
  • 258 Accesses

Résumé

Les cardiopathies congénitales constituent une cause fréquente de morbidité pédiatrique. Elles sont diagnostiquées chez 6 à 8 pour mille naissances vivantes. Plus de 50 % de ces enfants auront besoin d’une chirurgie cardiaque à cœur ouvert. L’amélioration de la survie de ces enfants s’est cependant accompagnée d’une augmentation des déficits neurologiques particulièrement des troubles neurocognitifs. L’origine des lésions cérébrales au décours des cardiopathies congénitales est multifactorielle: génétique, fœtale mais aussi acquise en postnatale au moment de la réparation chirurgicale et de la période qui suit. La grande fréquence des lésions cérébrales diagnostiquées à l’IRM en période préopératoire souligne cependant l’importance des anomalies structurales cérébrales associées aux malformations cardiaques. La fréquence particulière des lésions de la substance blanche observées dans certaines cardiopathies complexes pourrait s’apparenter aux lésions observées chez le nouveau-né prématuré et être expliquées par un certain degré d’immaturité cérébrale. Ces anomalies développementales augmenteraient la vulnérabilité du cerveau aux lésions acquises qui pourraient survenir pendant la chirurgie ou en période postopératoire. Une meilleure compréhension des mécanismes des lésions cérébrales ainsi que du moment de leur survenue aidera sûrement à la mise en place de stratégies neuroprotectrices dans le but d’améliorer le devenir neurologique de ces enfants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39: 1890–900

    Article  PubMed  Google Scholar 

  2. Samanek M (2000) Congenital heart malformations: prevalence, severity, survival, and quality of life. Cardiol. Young 10: 179–85

    PubMed  CAS  Google Scholar 

  3. Limperopoulos C, Majnemer A, Shevell M.I., et al. (2002) Predictors of developmental disabilities after open heart surgery in young children with congenital heart defects. J Pediatr 141: 51–8

    Article  PubMed  Google Scholar 

  4. Wernovsky G, Stiles KM, Gauvreau K, et al. (2000) Cognitive development after the Fontan operation. Circulation 102: 883–9

    Article  PubMed  CAS  Google Scholar 

  5. Miller G, Tesman JR, Ramer JC, et al. (1996) Outcome after open-heart surgery in infants and children. J Child Neurol 11: 49–53

    Article  PubMed  CAS  Google Scholar 

  6. Rogers BT, Msall ME, Buck GM, et al. (1995) Neurodevelopmental outcome of infants with hypoplastic left heart syndrome. J Pediatr 126: 496–8

    Article  PubMed  CAS  Google Scholar 

  7. Nookes SH, Gunn JK, Eldridge BJ, et al. (2010) A systematic review of motor and cognitive outcomes after surgery for congenital heart disease. Pediatrics 125: e818–27

    Article  Google Scholar 

  8. Von Rhein M, Scheer L, Loenneker T, et al. (2011) Structural brain lesions in adolescent with congenital heart disease. J Pediatr 158(6): 984–9

    Article  Google Scholar 

  9. Bellinger DC, Jonas RA, Rappaport LA, et al. (1995) Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or lowflow cardiopulmonary bypass. N Engl J Med 332: 549–55

    Article  PubMed  CAS  Google Scholar 

  10. Jonas R, Newburger JW, Volpe JJ (1996) Brain Injury and Pediatric Cardiac Surgery. Butterworth-Heinimann, Boston

    Google Scholar 

  11. Bellinger DC (2008) Are children with congenital cardiac malformations at increased risk of deficits in social cognition? Cardiol Young 18: 3–9

    Article  PubMed  Google Scholar 

  12. Limperopoulos C, Bassam H, Sullivan Nr, et al. (2008) Positive screening for autism in ex-preterm infants: prevalence and other risk factors. Pediatrics 1221: 758–65

    Article  Google Scholar 

  13. Calderon J, Bonnet D, Coutin C, et al. (2010) Executive functions and theory of mind in school-aged children after neonatal corrective cardiac surgery for transposition of the great arteries. Dev Med Child neurol 52: 1139–44

    Article  PubMed  Google Scholar 

  14. Glauser TA (1990) Congenital brain anomalies associated with the hypoplastic left heart syndrome. Pediatrics 85: 984–90

    PubMed  CAS  Google Scholar 

  15. Gaynor JW (2007) Patients characteristics are important determinants of neurodevelopmental outcome at one year of age after neonatal and infant cardiac surgery. J Thorac Cardiovasc Surg 133: 1344–53

    Article  PubMed  Google Scholar 

  16. Gaynor JW (2003) Apolipoprotein E genotype and neurodevelopmental sequelae of infant cardiac surgery. J Thorac Cardiovasc Surg 126: 1736–45

    Article  PubMed  CAS  Google Scholar 

  17. Bartlett JM, Wypij D, Bellinger DC, et al. (2004) Effect of prenatal diagnosis on outcomes in D-transposition of the great arteries. Pediatrics 113: e335–40

    Article  PubMed  Google Scholar 

  18. Limperopoulos C, Majnemer A, Shevell MI, et al. (1999) Neurologic status of newborns with congenital heart defects before open heart surgery. Pediatrics 103: 402–8

    Article  PubMed  CAS  Google Scholar 

  19. Mahle WT, Tavani F, Zimmerman RA, et al. (2002) An MRI study of neurological injury before and after congenital heart surgery. Circulation 106:I109–I14

    PubMed  Google Scholar 

  20. Jouannic JM, Benachi A, Bonnet D, et al. (2002) Middle cerebral artery Doppler in fetuses with transposition of the great arteries. Ultrasound Obstet Gynecol 20: 122–34

    Article  PubMed  Google Scholar 

  21. McElhinney DB, Benson CB, Brown DW, et al. (2010) Cerebral blood flow characteristics and biometry in fetuses undergoing prenatal intervention for aortic stenosis with evolving hypoplastic left heart syndrome. Ultrasound Med Biol 36: 29–37

    Article  PubMed  Google Scholar 

  22. Miller SP, McQuillen PS, Hamrick S, et al. (2007) Abnormal brain development in newborns with congenital heart disease. N Engl J Med 357: 1928–38

    Article  PubMed  CAS  Google Scholar 

  23. Galli KK, Zimmerman RA, G. P. Jarvik, et al. (2004) Periventricular leukomalacia is common after neonatal cardiac surgery. J Thorac Cardiovasc Surg 127: 692–704

    Article  PubMed  Google Scholar 

  24. Kinney HC, Panigrahy A, Newburger JW, et al. (2005) Hypoxic-ischemic brain injury in infants with congenital heart disease dying after cardiac surgery. Acta Neuropathol 110: 563–78

    Article  PubMed  Google Scholar 

  25. Back SA, Riddle A, McClure MM (2007) Maturation-dependent vulnerability of perinatal white matter in premature birth. Stroke 38(2 Suppl): 724–30

    Article  PubMed  Google Scholar 

  26. Licht DJ, Wang J, Silvestre DW, et al. (2004) Preoperative cerebral blood flow is diminished in neonates with severe congenital heart defects. J Thorac Cardiovasc Surg 128: 841–9

    PubMed  Google Scholar 

  27. Rosenthal GL (1996) Patterns of prenatal growth among infants with cardiovascular malformations: possible fetal hemodynamic effects. Am J Epidemiol 143: 505–13

    Article  PubMed  CAS  Google Scholar 

  28. Partridge SC, Vigneron DB, Charlton NN, et al. (2006) Pyramidal tract maturation after brain injury in newborns with heart disease. Ann Neurol 59: 640–51

    Article  PubMed  Google Scholar 

  29. Licht D, Shera DM, Clancy RR, et al. (2009) Brain maturation is delayed in infants with complex congenital heart defects. J Thorac Cardiovasc Surg 137: 529–37

    Article  PubMed  Google Scholar 

  30. Shedeed SS, Elfaytouri E (2011) Brain Maturity and Brain Injury in Newborns With Cyanotic Congenital Heart Disease. Pediatr Cardiol 32: 47–54

    Article  PubMed  Google Scholar 

  31. McQuillen PS, Barkovich AJ, Hamrick SE, et al. (2007) Temporal and anatomic risk profile of brain injury with neonatal repair of congenital heart defects. Stroke 38: 736–41

    Article  PubMed  Google Scholar 

  32. McQuillen PS, Hamrick SE, Perez MJ, et al. (2006) Balloon atrial septostomy associated with preoperative stroke in neonates with transposition of the great arteries. Circulation 113: 280–5

    Article  PubMed  Google Scholar 

  33. Dent CL, Spaeth JP, Jones BV, et al. (2006) Brain magnetic resonance imaging abnormalities after the Norwood procedure using regional cerebral perfusion. J Thorac Cardiovasc Surg 131: 190–7

    Article  PubMed  Google Scholar 

  34. Newman MF, Kirchner JL, Phillips-Bute B, et al. (2001) Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med 344: 395–402

    Article  PubMed  CAS  Google Scholar 

  35. McQuillen PS, Nishimoto MS, Bottrell CL, et al. (2007) Regional and central venous oxygen saturation monitoring following pediatric cardiac surgery: concordance and association with clinical variables. Pediatr Crit Care Med 8: 154–60

    Article  PubMed  Google Scholar 

  36. Hoffman GM, Mussatto KA, Brosig CL, et al. (2005) Systemic venous oxygen saturation after the Norwood procedure and childhood neurodevelopmental outcome. J Thorac Cardiovasc Surg 130: 1094–100

    Article  PubMed  Google Scholar 

  37. Bellinger DC, Jonas RA, Rappapport LA, et al. (1995) Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. N Engl J Med 332: 549–55

    Article  PubMed  CAS  Google Scholar 

  38. Visconti KJ, Rimmer D, Gauvreau K, et al. (2006) Regional low-flow perfusion versus circulatory arrest in neonates: one-year neurodevelopmental outcome. Ann Thorac Surg 82: 2207–11

    Article  PubMed  Google Scholar 

  39. Fraser Jr CD, Andropoulos DB (2008) Principles of antegrade cerebral perfusion during arch reconstruction in newborns/infants. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu: 61–8

    Google Scholar 

  40. Hudetz JA, Pagel PS (2010) Neuroprotection by ketamine: a review of the experimental and clinical evidence. J Cardiothorac Vasc Anesth 24: 131–42

    Article  PubMed  CAS  Google Scholar 

  41. American Heart Association (2005) American Heart Association (AHA) guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiovascular care (ECC) of pediatric and neonatal patients: pediatric advanced life support 2006. Pediatrics 117: e1005–28

    Article  Google Scholar 

  42. Manole MD, Kochanek PM, Fink EL, Clark RS (2009) Postcardiac arrest syndrome: focus on the brain. Curr Opin Pediatr 21: 745–50

    Article  PubMed  Google Scholar 

  43. Kharbanda RK, Nielsen TT, Redington AN (2009) Translation of remote ischaemic preconditioning into clinical practice. Lancet 374: 1557–65

    Article  PubMed  Google Scholar 

  44. Andropoulos DB, Brady KM, Easley RB, et al. (2010) Neuroprotection in pediatric cardiac surgery: what is on horizon? Progress in Pediatric Cardiology 29: 113–22

    Article  PubMed  Google Scholar 

  45. Albers EL, Bichell DP, McLaughlin B (2010) New approaches to neuroprotection in infant heart surgery 68: 1–9

    Google Scholar 

  46. Rudolph AM (2007) Aortopulmonary transposition in the fetus: speculation on pathophysiology and therapy. Pediatr Res 61: 375–80

    Article  PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag France

About this paper

Cite this paper

Saliba, E. (2011). Cardiopathies congénitales et développement cérébral. In: 41es Journées nationales de la Société Française de Médecine Périnatale (Grenoble 12–14 octobre 2011). Springer, Paris. https://doi.org/10.1007/978-2-8178-0257-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0257-2_16

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0256-5

  • Online ISBN: 978-2-8178-0257-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics