Advertisement

Perspectives of contrast agents in ten years

  • J. M. Frölich
  • K.D. Hagspiel

Abstract

While it’s quite easy to extrapolate technical developments linearly, predictions are difficult to make when the old ways of thinking and existing paradigms suddenly aren’t any more adequate. Exciting new approaches suddenly occur making predictions about the future obsolete: in diagnostic radiology the introduction of X-rays, digital subtraction techniques, metabolic imaging in nuclear medicine and cross-sectional imaging in general have constituted such sudden drifts.

Keywords

Contrast Agent Iodine Concentration Barium Sulfate Iodinate Contrast Agent Magnetic Resonance Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Taourel PG, Pageaux GP, Coste V, Fahre J-M, Pradel JA, Ramos J, Larrey D, Domergue J, Michel H, Bruel J-M (1995) Small hepatocellular carcinoma in patients undergoing liver transplantation: detection with CT after injection of iodized on. Radiology 197:377–80PubMedGoogle Scholar
  2. 2.
    Elke M (1992) Kmtrastmittel in der radiologischen Diagnostik. 3rd ed, Thieme, Stuttgart, New YorkGoogle Scholar
  3. 3.
    Petta M, Raynal I, Bourrinet P, Yadel M, Meyer D (1998) Noniomc compact dimers: a new generation of isoosmo-kr iodinated contrast media with low viscosity. Acad Radiol 5:41–8PubMedGoogle Scholar
  4. 4.
    Water M, Kaufmann U, Luescher T, Meier B (1998) Low or high iodine content of contrast medium for cardiac angiography? J Intervent Cardiol 11(2): 113–6Google Scholar
  5. 5.
    Storto ML, Ciccotosto C, Patea RL, Spinazzi A, Bonomo L (1994 May) Spiral CT of the mediastinum; optimization of contrast medium use. Eur J Radiol 18(Suppl 1): S83–7PubMedGoogle Scholar
  6. 6.
    Rubin GD, Lane MJ, Bloch DA, Leung AN, Stark P (1996) Optimization of thoracic spiral CT: effects of iodinated contrast medium concentration. Radiology 201:785–91PubMedGoogle Scholar
  7. 7.
    Blomley MJK, Dawson P (1997) Bolus dynamics: theoretical and experimental aspects. Br J Radiology 70:351–9Google Scholar
  8. 8.
    Zeman RK, Baron RL, Jeffrey RB, Klein J, Siegel MJ, Silverman PM (1998) Helical body CT: Evolution of scanning protocols. AJR 170:1427–38PubMedGoogle Scholar
  9. 9.
    Rogalla P, Mutze S, Hamm B, Body CT (1996) State-of-the-art; protocols for long-spiral CT, short-spiral CT, incremental CT. Zucksehwerdt, MünchenGoogle Scholar
  10. 10.
    Feuerbach S, Lorenz W, Klose K-J, Gmemwieser J, Lackner K-J, Landwehr P, Grabbe E, Klöppel R (1996) Kontrastmittelapplikation bd der Spiral-Computerto-mographie: Ergebnisse tíner Konsensuskonferenz. RÖFO 164(2): 158–65PubMedGoogle Scholar
  11. 11.
    Krause W, (1998) Contrast agents. Stete of the art. International J Neuroradiology 4:296–312Google Scholar
  12. 12.
    Roth R, Akin M, DeEgonul U, Kern MJ (1991) Influence of radiographic contrast media viscosity to flow through coronary angiographic catheters. Catheterization and Cardiovascular Diagnosis 22:290–4PubMedGoogle Scholar
  13. 13.
    Kern MJ, Roth R, Aguirre FV, Beauman G, Vogel R(1992) Effect of viscosity and iodine concentration of nonionic radiographic contrast media on coronary arteriography in patients. American Heart J 123(1): 160–5Google Scholar
  14. 14.
    Violon D (1996) Correlation of some geometric parameters derived from molecular models of monomer nonio-nic contrast medium molecules with their octanol/water partition coeffident. Investigative Radiology 31:569–76PubMedGoogle Scholar
  15. 15.
    Bonnemain B, Meyer D, Schaefer M, Dugast-Zrihen M, Legreneur S, Doucet D (1990) New iodinated, low-osmo-lar contrast media. A revised concept of hydrophilidty. Invest Radiol 25: S104–6PubMedGoogle Scholar
  16. 16.
    Meyer D, Petta M, Fouchet MH, Vadd M, Schaefer M, Dugast-Zrihen M, Guillemot M (1996) Stabilization of the hydrophilc sphere of iobitridol, a new nonionic iodinated contrast agent. Acta Radiologica 37(Suppl 400): 8–16Google Scholar
  17. 17.
    Li X, Gabrid DA (1997) Differences between contest media in the inhibition of platelet activation by specific platelet agonists. Acad Radiol 4:108–14PubMedGoogle Scholar
  18. 18.
    Grines CL, Schreiber TL, Savas V et al (1996) A randomized trial of low osmolar ionic versus noniomc contrast media in patients with myocardial infarction or unstable angina undergoing percutaneous transluminal coronary angioplasty. J Am Coll Cardiol 27:1381–6PubMedGoogle Scholar
  19. 19.
    Lefevre T et al (1997) Ionic versus noniomc contrast media in percutaneous coronary angioplasty. Current concepts on the role of thrombosis in interventional cardiology, focus on contrast agente 14-18. ISBN 2-9510619-0-0Google Scholar
  20. 20.
    Qureshi NR et al (1997) Percutaneous coronary angio-scopie comparison of thrombus formation during PTCA with ionic and nonionic low osmolality contrast media in unstable angina. Am J Cardiol 80Google Scholar
  21. 21.
    Corot C et al (1996) In vitro comparison of the effects of contrast media on coagulation and platelet activation. Blood Coagulation and Fibrinolysis 7:602–8PubMedGoogle Scholar
  22. 22.
    Aguirre FV, Topol EJ, Donohue TJ, Kern MJ, Leimberger JD, Califf RM (1995) Impact of ionic and non-ionic contrast media on post-PTCA ischemic complications: results from the EPIC trial. JACC, (Suppl)Google Scholar
  23. 23.
    Krause W (1996) Application of pharmacokinetics to computed tomography: injection rates and schemes: mono-, bi-or multiphasic? Invest Radiol 31:91PubMedGoogle Scholar
  24. 24.
    Galanski M, Prokop M, Chavan A, Schaefer CM, Jandddt K, Nischelsky JE (1993) Renal arterial stenoses: spiral CT angiography. Radiology 189:185–92PubMedGoogle Scholar
  25. 25.
    Bongartz G, Boos M, Scheffler K, Stdnbrich W (1998) Pulmonary circulation. Eur Radiol 8: 698–706PubMedGoogle Scholar
  26. 26.
    Kemmerer SR, Mortele KJ, Ros PR (1998) CT scan of the Ever. Radiologic Climes of North America 36(2): 247–261Google Scholar
  27. 27.
    Puskas Z, Schuierer G (1996) Kreislaufzeitbestimmung zur Optimierung der Kontrastmittekpplikation bei der CT-Angiographie. Radiologe 36:750–7PubMedGoogle Scholar
  28. 28.
    Oliver JH, Baron RL, Ferderle MP, Jones BC, Sheng R (1997) Hypervascular liver metastases: do unenhanced and hepatic arterial phase CT images affect tumor detection. Radiology 205:709–15PubMedGoogle Scholar
  29. 29.
    Laroche D et al (1998) Mechanisms of severe, immediate reactions to iodinated contrast material. Radiology 209: 183–90PubMedGoogle Scholar
  30. 30.
    Lasser EC, Lyon SG, Berry CC (1997) Reports on contrast media reactions: analysis of data from reporte to the US Food and Drug Administration. Radiology 203: 605–10PubMedGoogle Scholar
  31. 31.
    Jacobs JE, Birnbaum BA, Langlotz CP (1998) Contrast media reactions and extravasation: realationship to intravenous injection rates. Radiology 209:411–6PubMedGoogle Scholar
  32. 32.
    Leander P, Höglund P, Kloster Y, Borsefh A (1998) New liposomal Ever-specific contrast agent for CT: first human phase I clinical trial assessing efficacy and safety. Academic Radiology 5(Suppl 1): 6–8Google Scholar
  33. 33.
    Spinazzi A, Ceriati S, Lorusso V, Pianezzola P, Zaccarini P, Fouillet X (1998) Safety and pharmacokinetics of BR21, a Ever-specific CT agent, in healthy volunteers. Academic Radiology 5(Suppl 1): 20–2Google Scholar
  34. 34.
    Magnusson A, Berpnan A, Carneheim C, von Scheele L, Wessen A (1998) Contrast enhancement of the liver in healthy male volunteers folowing intravenous administration of FP 736-04. Acad Radiol 5; Sl; 9–12Google Scholar
  35. 35.
    Bergman A, Magnussen A, Moore K, Sundin A (1998) Efficacy of the hepatocyte-specific contrast medium FP 736-04 for CT in two models of experimental diffuse li-ver disease. Academic Radiology 5(Suppl 1): 13–5Google Scholar
  36. 36.
    Schuhmann-Giampieri G, Rupp K, Muschick P, Treher M, Werner K (1998) Dysprosium EOB DTPA: a new li-ver-specific contrast agent for computed tomography. Academic Radiology 5(Suppl 1): 90–2Google Scholar
  37. 37.
    Dix WR (1995) Intravenous coronary angiography with synchroton radiation. Prog Biophys Mol Biol 63:159–91PubMedGoogle Scholar
  38. 38.
    Bluemke DA, Chambers TP (1995) Spiral CT angiography: an alternative to conventional angiography. Radiology 195:317–9PubMedGoogle Scholar
  39. 39.
    Vock P, Soucek M, Daepp M, Kalender WA (1990) Lung: spiral volumetric CT with single-breath-hold technique. Radiology 176:864–7PubMedGoogle Scholar
  40. 40.
    Bergi JP, Elkohen M, Deklunder G, Artaud D, Coullet JM, Wattinne L (1996) Helical CT angiography compared with arteriography in the detection of renal artery stenosis. AJR 167:495–501Google Scholar
  41. 41.
    Remy-Jardin M, Remy J, Wattinne L, Giraud F (1992) Central pulmonary thromboembolism: diagnosis with spiral volumetric CT with the single-breath-hold technique. Comparison with pulmonary angiography. Radiology 185:381–7PubMedGoogle Scholar
  42. 42.
    Zeman RK, Berman PM, Silverman PM et al (1995) Diagnosis of aortic dissection: value of helical CT with multiplanar reformation and three-dimensional rendering. AJR 164:1375–80PubMedGoogle Scholar
  43. 43.
    Mirvis SE, Shanmuganathan K, Miller BH, White CS, Turney SZ (1996) Traumatic aortic injury: diagnosis with contrast-enhanced thoracic CT-five year experience at a major trauma center. Radiology 200:413–22PubMedGoogle Scholar
  44. 44.
    Quint LE, Francis IR, Williams DM et al (1996) Evaluation of thoracic aortic disease with the use of helical CT and multiplanar reconstructions: comparison with surgical findings. Radiology 201:37–41PubMedGoogle Scholar
  45. 45.
    Rubin GD, Date MD, Napel S et al (1994) Spiral CT of renal artery stenosis: comparison of three-dimensional rendering techniques. Radiology 190:181–9PubMedGoogle Scholar
  46. 46.
    Rubin GD, Date MD, Napel SA, McDonnell CH, Jeffrey RBJ (1993) Abdominal spiral CT angiography: initial clinical experience. Radiology 186:147–52PubMedGoogle Scholar
  47. 47.
    Rubin GD, Napel S (1995) Increased scan pitch for vascular and thoracic spiral CT. Radiology 197:316–7PubMedGoogle Scholar
  48. 48.
    Platt JF, Ellis JH, Korobkin M, Reige KA, Konnak JW, Leichman AB (1996) Potential renal donors: comparison of conventional imaging with helical CT. Radiology 198: 419–23PubMedGoogle Scholar
  49. 49.
    Hopkins KL, Patrick LE, Simoneaux SF, Bank ER, Parks WJ, Smith SS (1996) Pediatric great vessel anomales: initial clinical experience with spiral CT angiography. Radiology 200:811–5PubMedGoogle Scholar
  50. 50.
    van Hoe L, Baert AL, Gryspeerdt S et al (1996) Supra-and juxtarenal aneurysms of the abdominal aorta: preoperative assessment with thin-section spiral CT. Radiology 198:443–8PubMedGoogle Scholar
  51. 51.
    Raptopoulos V, Rosen MP, Kent KC, Kuestner LM, Sheiman RG, Pearlman JD (1996) Sequential helical CT augiography of aortoiliac disease. AJR 166:1347–54PubMedGoogle Scholar
  52. 52.
    Winiter TC, Freeny PC, Nghiem HV et al (1995) Hepatic arterial anatomy in transplantation candidates: evaluation with three-dimensional CT arteriography [see comments]. Radiology 195:363–70Google Scholar
  53. 53.
    Parfrey PS, Griffiths M, Barrett BJ, Paul MD, Genge M, Withers J, Farid N, McManon PJ (1989) Contrast material-induced renal Mure in patients with diabetes mellitus, renal insufficiency or both. N Engl J Med 320:143–53PubMedGoogle Scholar
  54. 54.
    Hawkins IF (1982) Carbon dioxide digital subtraction arteriography. AJR 139:19–24PubMedGoogle Scholar
  55. 55.
    Kerns SR, Hawkins IF (1995) Carbon dioxide digital subtraction angiography: expanding applications and technical evolution. AJR 164:735–41PubMedGoogle Scholar
  56. 56.
    Rolland Y, Duvauferrier R, Lucas A, Gourky C, Morcet N, Rambeau M, Chaperon J (1998) Lower limb angiography: a prospective study comparing carbon dioxide with iodinated contrast material in 30 patients. AJR 171: 333–7PubMedGoogle Scholar
  57. 57.
    Zwaan VM, Zwaan W, Kagel C, Rummer-Kloess D, Matthies-Zwaan S, Schütz R-M, Weiss H-D (1996) Kohlendioxid als alternatives kontrastmittel für die periphere angiographie. Fortschr Röntgenstr 164:445–8Google Scholar
  58. 58.
    Schild Von HH, Weber W, Boeck E, Mildenberger P, Strunk H, Düber CH, Grebe P, Schadmand-Fischer S, Thelen M (1994) Gadolinium-DTPA (Magnevist®) als kontrastmittel für die arterielle DSA, Fortschr Röntgenstr 160(3): 218–21Google Scholar
  59. 59.
    Kaufman JA, Geler SC, Waltman AC (1996) Renal insufficiency: pdopentetate dimeglumine as a radiographic contrast agent during peripheral vascular interventional procedures. Radiology 198:579–81PubMedGoogle Scholar
  60. 60.
    Fobbe F, Wacker F, Wagner S (1996) Arterial angiography in the high-kilovoltage technique with pdolinium as the contrast agent first clinical experience. Eur Radiol 6:224–9PubMedGoogle Scholar
  61. 61.
    Spinosa DJ, Hartwell GD, Angle JF, Hagspie KD, Agarwal SJ, Mateumoto AH (1998) Optimizing imaging technique for gadolinium contrast angiography. JVIR 9: (Suppl2)Google Scholar
  62. 62.
    Wessleder R, Elizondo G, Wttenberg J et al: Ultra small superparamapietic iron oxide (1990) Radiology 175: 489–93Google Scholar
  63. 63.
    Fahlvik AK, Klaveness J, Stark DD (1993) Iron oxides as MR imaging contrast agente. JMRI 3:187–94PubMedGoogle Scholar
  64. 64.
    Rinck PA, Muller RN (1999) Field strength and dose dependence of contrast enhancement by gadolinium-based MR contrast agents. European Radiology (in press)Google Scholar
  65. 65.
    Rmck PA, Muller RN (1998) Field strength and dose dependence of contrast enhancement by gadolinium-based MR contrast agents. Magnetic Resonance Materials in Physics, Biology and Medicine 6(Suppl 1): 308Google Scholar
  66. 66.
    Yuh WTC, Parker JR, Carvlin MJ (1997) Indication-related dosing for magnetic resonance contrast media. Eur. Radiol 7(Suppl 5): S269–75Google Scholar
  67. 67.
    Mathur-de Yré R and Lemort M: Invited review: biophysical properties and clinical applications of magnetic resonance imaging contrast agents. Br J Radiol. 1995 Mar; 68(807):225–47Google Scholar
  68. 68.
    Fonchy E, Remy C, Benderbous S, François-Joubert A, Lahreeh H, Rubin C, Dupeyre R, Décorps M (1998) A new contrast agent for brain MR imaging kinetic study on a rat brain glioma model. Magnetic Resonance Materials in Physics, Biology and Medicine 6(Suppl 1): 321Google Scholar
  69. 69.
    Marchand B, Douek Ph, Benderbous S, Casali C, Canet E (1998) Noninvasive evaluation of the pharmacokinetic and relaxivity of new MR contrast agente for MR angiography. Magnetic Resonance Materials in Physics, Biology and Medicine 6(Suppl 1): 211Google Scholar
  70. 70.
    Ranganathan RS, Fernandez ME, Kang S, Nunn AD, Ratsep PC, Radmakrishna Pillai KM, Zhang X, Tweedle MF (1998) New multimeric magnetic resonance imaging agente. Investigative Radiology 33(11): 779–97PubMedGoogle Scholar
  71. 71.
    Grist EM, Korosec FR, Peters DC, Wtte S, Walovitdh RC, Dolan RP, Bridson WE, Yucel EK, Mistretta CA (1998) Steady-state and dynamic MR angiography with MS-325: initial experience in humans. Radiology 207: 539–44PubMedGoogle Scholar
  72. 72.
    Laufe RB, Parmelee DJ, Dunham SU, Ouellet HS, Dokn RP, Witte S, McMurry TJ, Waloviteh RC (1998) MS-325: Albumin-targeted contrast agent for MR angiography. Radiology 207:529–38Google Scholar
  73. 73.
    Vahlensieck M, Träber F, Schild H (1998) Magneti-sierungs-Transfer-Kontrast (MTC): Grundlagen, Techniken und Anwendungen. Fortschr Röntgenstr 169:10–3Google Scholar
  74. 74.
    Danek AN, Bryant RG (1998) Magnetic relaxation contrast agente in magnetization transfer imaging. Investiptive Radiology, 33(11): 773–8Google Scholar
  75. 75.
    Tweedle MF (1997) The ProHance stray: the making of a novel MRI contrast agent. Eur Radiol 7(Suppl 5): S225–30Google Scholar
  76. 76.
    Soyer P, Spelle L, Gouhiri M, Rondeau Y, Pelage J-P, Scherrer A, Rymer R (1999) Gadolinium chelate-enhan-ced subtraction spoiled gradient-recalled echo MR imaging of hepatic tumors. AJR 172:79–82PubMedGoogle Scholar
  77. 77.
    Tweedle MF (1992) Infest Radiology 27 (Suppl 1): S2–S6Google Scholar
  78. 78.
    Viehweg P, Paprosch I, Strassinopoulou M, Heywang-Köbrunner SH (1998) Contrast-enhanced magnetic resonance imaging of the breast interpretation guidelines. Topics in Magnetic Resonance Imaging 9(1): 17–43PubMedGoogle Scholar
  79. 79.
    Corot C, Idee J-M, Hentsch A-M, Santos R, Mallet C, Goulas V, Bonnemain B, Meyer D (1998) Structure-activity relationship of macroeyclic and linear pdolinium chelates: investigation of transmetallation effect on the zinc-dependent melallopeptidase angiotensin-converting enzyme. JMRI 8:695–702PubMedGoogle Scholar
  80. 80.
    Neiss AC, LeMignon MM, Vitry A, Caille JM (1991) Effieacité et tolérance du DOTA-Gd lora d’une enquête multicentrique européenne. Résultats préliminiaires sur 4169 cas. Revue d’Imagérie Médicale 3:383–7Google Scholar
  81. 81.
    Oudkerk M, Sijens PE, van Beek EJR, Kuijpers TJA (1995) Safety and efficacy of Dotaran (Gd-DOTA) versus Magnevist (Gd-DTPA) in Magnetic Resonance Imaging of the Central Nervous System. Investitive Radiology 30:75–8Google Scholar
  82. 82.
    Runge VM, Parker JR (1997) Worldwide clinical safety assessment of gadoteridol injection: an update. Eur Radiol 7(Suppl. 5): S243–5Google Scholar
  83. 83.
    Murphy KJ, Brunberg JA and Cohan RH: Adverse reactions to gadolinium contrast media: a review of 36 cases. AIR Am J Roentgenol. 1996 Oct;167(4):847–9.Google Scholar
  84. 84.
    Nelson KL and Runge VM: Basic principles of MR contrast. Top Magn Reson Imaging. 1995 Summer;7(3):124–36.PubMedGoogle Scholar
  85. 85.
    Szé G, Brant-Zawadzki M, Haughton VM et al: Multicenter study of gadodiamide injection as a contrast agent in MR imaging of the brain and spine. Radiology. 1991 Dec; 181(3):693–9.PubMedGoogle Scholar
  86. 86.
    Helgason JW, Chandnani VP, Yu IS (1997) MR Arthrography: a review of current technique and applications. AJR 168:1473–80PubMedGoogle Scholar
  87. 87.
    Engel A, Hajek P, Kramer I, Hamilton G, Oesterreicher C, Lintner F, Clauss W (1990) Magnetic resonance knee arthrography. Acta Ormopaedica Scandinavica 61(Suppl 240): 1–57Google Scholar
  88. 88.
    Zanetti M, Hodler J (1997) Contrast media in MR arthrography of the glenohumeral joint: intra-articular ga-dopentetate vs sahne preliminary resulte. Eur Radiol 7: 498–502PubMedGoogle Scholar
  89. 89.
    Yahlensieck M, Sommer T, Textor I, Pauleit D, Lang Ph, Kenant HK, Schild HH (1998) Indirect MR arthrography: techniques and applications. Eur Radiol 8:232–5Google Scholar
  90. 90.
    Yucel EK, Kaufmann JA, Prince M, Bazari H, Fong LS, William AC (1993) Time of flight rend MR arteriography: utility in patients with renal insufficiency. Magn Reson Imaging 11:925–30PubMedGoogle Scholar
  91. 91.
    Owen RS, Carpenter IP, Baum RA, Perloff LI, Cope C (1992) Magnetic resonance imaging of angiographically occult runoff vessels in peripheral arterial occlusive disease. N Engl I Med 326:1577–81Google Scholar
  92. 92.
    Prince MR (1994) Gadolinium-enhanced MR aortography. Radiology 191:155–64PubMedGoogle Scholar
  93. 93.
    Prince MR (1998) Peripheral vascular MR angiography: the time has come. Radiology 206:592–3PubMedGoogle Scholar
  94. 94.
    Nienaber CA, Kodolitsch YU, Nicholas V et al (1993) The diagnosis of thoracic aortic dissection by noninvasive imaging procedures. N Engl J Med 328:1–9PubMedGoogle Scholar
  95. 95.
    Meaney IF, Prince MR, Nostrant TT, Stanley JC (1997) GadolMum-enhanced MR angiography of visceral arteries in patients with suspected chronic mesenteric ischemia. J Magn Reson Imaging 7:171–6PubMedGoogle Scholar
  96. 96.
    Krinsky GA, Rofiky MM, DeCorato DR, Weinreb JC, Earls IP, Flyer MA, Galloway AC, Calvin SB (1997) Thoracic aorta: comparison of gadolMum-enhanced three-dimensional MR angiography with conventional MR imaging. Radiology 202:183–93PubMedGoogle Scholar
  97. 97.
    Kim D, Edehnan RR, Kent KC, Porter DH, Skillman JJ (1990) Abdominal aorta and renal artery stenosis: evaluation with MR angiography. Radiology 174:727–31PubMedGoogle Scholar
  98. 98.
    Douek PC, Revel D, Chazel S, Falise B, Villard J, Amiel M (1995) Fast MR angiography of the aortoiliac arteries and arteries of the lower extremity: value of bolus-enhanced, whole-volume subtraction technique. AIR 165: 431–7Google Scholar
  99. 99.
    Rofsky NM, Purdy DE, Johnson G, DeCorato DR, Earles JP, Krinsky G, Weinreb JC (1997) Suppression of venous signal in time-of-flight MR angiography of the lower extremities after administration of gadopentetate dimeglu-mine. Radiology 202:177–82PubMedGoogle Scholar
  100. 100.
    Meaney JF, Weg JG, Chenevert TL, Stafford-Iohnson D, Hamilton BH, Prince MR (1997) Diagnosis of pulmonary embolism with mafmetic resonance angiography. N Engl J Med 336:1422–7PubMedGoogle Scholar
  101. 101.
    Litt AW, Eidelman EM, Pinto RS, Riles TS, McLachlan SJ, Schwartzenberg S, Weinreb JC, Kricheff II (1991) Diagnosis of carotid artery stenosis: comparison of 2DFT time-of-flight MR angiography with contrast angiography in 50 patients. AJNR 12:149–54PubMedGoogle Scholar
  102. 102.
    Levy RA, Prince MR (1996) Arterial-phase three-dimensional contrast-enhanced MR angiography of the carotid arteries. AIR 167:211–5Google Scholar
  103. 103.
    Yamashita Y, Mtsuzaki K, Miyazaki T, Namimoto T, Sumi S, Urate I, Abe Y, Opta I, Takasbashi M (1996) Gadolinium-enhanced breath-hold three-dimensional MR angiography of the portel vein: value of the magnetization-prepared rapid acquisition gradient-echo sequence. Radiology 201-83-8Google Scholar
  104. 104.
    Frank H, Weissleder R, Bogdanov AA Jr, Brady TJ (1994) Detection of pulmonary emboli by using MR angiography with MPEG-PL-GdDTPA: an experimental study in rabbits. AIR 162:1041–6Google Scholar
  105. 105.
    Anzai Y, Prince MR, Chenevert TL, Maki JH, Londy F, London M, McLachlan SJ (1997) MR angiography with an ultrasmall superparamagnetic ron oxide blood agent. J Magn Reson Imaging 7:209–14PubMedGoogle Scholar
  106. 106.
    Prince MR, Grist TM, Debatin JF (1997) 3D contrast MR angiography. Springer, BerlinGoogle Scholar
  107. 107.
    Boos M, Scheffler K, Haselhorst R et al (1999) Evaluation of arterial first pass contrast medium dynamics as a function of various intravenous injection parameters. ECRGoogle Scholar
  108. 108.
    Curtet C, Maton F, Havet T, Slinkin M, Mishra A, Chatal J-F, Muller RN (1998) Polylysine-Gd-DTPAn and polyly-sine-Gd-DOTAn coupled to anti-CEA F(ab’)2 frafpnents as potential immunocontrast agents. Investigative Radiology 33(10): 752–61PubMedGoogle Scholar
  109. 109.
    Weissleder R, Bogdanov A, Neuwelt EA, Papisov M (1995) Long-circulating iron oxides for MR imaging. Advanced Drug Delivery Reviews 16:321–34Google Scholar
  110. 110.
    Hahn PF, Saini S (1998) Liver-specific ME imaging contrast agente. Radiologic Clinics of North America 36(2): 287–98PubMedGoogle Scholar
  111. 111.
    Grangier C, Toumiaire J, Mentha G, Sehiau R, Howarth N, Chachuat A, Grossholz M, Terrier F (1994) Enhan-cement of Ever hemangiomas on T1-weighted MR SE images by superparamagnetic iron oxide particles. J Comput Assist Tomogr 18(6): 888–96PubMedGoogle Scholar
  112. 112.
    Scharf J, Hoffmann Y, Lehnert Th, Anselm H, Richter GM, lauffmann GW (1998) Psmdolesions at T1-weigh-ted gradient-echo imaging ate administration of super-paramagnetie iron oxide: comparison with ported perfusion abnormalities at CT during arterial protography. Radiology 207:67–72PubMedGoogle Scholar
  113. 113.
    Ros PR, Freeny PC, Harms SE et al (1995) Hepatic MR imaging with ferumoxides: A multicenter clinical trial of the safety and efficacy in the detection of focal hepatic lesions. Radiology 196:481–8PubMedGoogle Scholar
  114. 114.
    Hagspiel KD, Neidl KF, Eichenberger AC et al (1995) Detection of liver metastases: comparison of superparamagnetic iron oxide-enhanced and unenhanced MR imaging at 1.5 T with dynamic CT, intraoperative US, and percutaneous US Radiology 196:471–8Google Scholar
  115. 115.
    Lencioni R, Donati F, Cioni D, Paolicehi A, Cicorelli A, Bartolozzi C (1998) Detection of colorectal liver metastases: prospective comparison of unenhanced and feru-moxides-enhanced magnetic resonance imaging at 1.5 T, dual-phase spiral CT, and spiral CT during arterial portography. Magnetic Resonance Materials in Physics, Biology and Medicine vol. n° 776-87Google Scholar
  116. 116.
    Senétere E, Taourel P, Bouvier Y et al (1996) Detection of hepatic metastases: ferumoxides-enhanced MR imaging versus unenhanced MR imaging and CT during arterial portography. Radiology 200:785–92Google Scholar
  117. 117.
    Vogl TJ, Hammerstingl R, Schwarz W et al (1996) Superparamagnetic iron oxide-enhanced versus gadolinium-enhanced MR imaging for differential diagnosis of focal liver lesions. Radiology 198:881–7PubMedGoogle Scholar
  118. 118.
    Jung G, Krahe Th, Kugel H, Gieseke J, Walter Ch, Lackner K (1998) Detection of focal hepatic lesions. Effecte of superparamagnetic iron oxide (AMI-25) on magnetic resonance imaging of the liver using T2-weighted fest spin-echo sequences and gradient-and-spin-echo sequences at 1.0 Tesla. Investigative Radiology 33(2): 61–7PubMedGoogle Scholar
  119. 119.
    Harismghani MG, Saini S, Weissleder R et al (1997) Differentiation of liver hemangiomas from metastases and hepatocellular carcinoma at MR imaging enhanced with clood-pool contrast agent code-7227. Radiology 202:687–91Google Scholar
  120. 120.
    Weissleder R (1991) Target-specific superparamagnetic MR contest agents. Magn Reson Med 22:209–12PubMedGoogle Scholar
  121. 121.
    De Haën C, Gozzini L (1993) Soluble-type hepatobiliary contrast agente for MR imaging. JMRI 3:179–86PubMedGoogle Scholar
  122. 122.
    Mitchell DG (1993) Hepatobiliary contrast material: a magic bullet for sensitivity and specificity? Radiology 188:21–2PubMedGoogle Scholar
  123. 123.
    Baron RL, Peterson MS, Thaete FL et al (1995) Liver tumor detection: comparison of Gd-BOPTA-enhanced MR, contest-enhanced CT, and CT arterial portography. Radiology 197(F): 415Google Scholar
  124. 124.
    Kirchin MA, Pirovano GP, Spinazzi A (1998) Gadobenate dimeglumine (Gd-BOPTA): an overview. Invest Radiol 33:798–809PubMedGoogle Scholar
  125. 125.
    Hamm B, Staks T, Mühler A (1995) Phase I clinical evaluation of Gd-EOB-DTPA as a hepatobiliary MR contrast agent safety, pharmacoltinetics, and MR imaging. Radiology 195:785–92PubMedGoogle Scholar
  126. 126.
    Reimer P, Tomback B, Daldrup HE et al (1997) Enhancement characteristics of liver metastases, hepatocellular carcinomas, and hemangiomas with Gd-EOB-DTPA: preliminary results with dynamic MR imaging. Eur Radiol 7:275–80PubMedGoogle Scholar
  127. 127.
    Brasch RC (1991): Rationale and applications for macro-molecular Gd-based contrast agente. Magn Reson Med 1991 Dec;22(2):282–7; discussion 300-3.PubMedGoogle Scholar
  128. 128.
    Yucel EK, Iauffer RB (1998) Blood pool agente for MRA. Seminars in Interventional Radiology 15(2): 215–22Google Scholar
  129. 129.
    Corot C, Schaefer M, Beaute S, Bourrinet P et al (1997) Physical, chemical and biological evaluations of CMD-A2-Gd-DOTA. Acto Radiologica 38[Suppl 412]: 91–99Google Scholar
  130. 130.
    Wiener EC, Brechbiel MW, Brothers H, Magin RL et al (1994) Dendrimer based metal chelates: a new class of magnetic resonance imaging contrast agente. Magnetic Resonance Imaging 31:1–8Google Scholar
  131. 131.
    Cacheris WP, Grabiak RC, Lee AC, Richard TJ, Goodin TH, Kaufmann RJ (1994) Emulsions of lipophilic paramagnetic complexes as MRI contrast media. New developments in contrast agent research. Proc 4th Special Topic entinar of the European Magnetic Resonance Forum, Santiago de Compostela, Spain, pp. 37–51Google Scholar
  132. 132.
    Koenig SH, Rellar KE (1998) Blood-pool contrast agents for MM: a critical evaluation. Acad Radiol 5(Suppl 1): S200–5PubMedGoogle Scholar
  133. 133.
    Adzamli K, Haar JP, Hynes MR, Miller DB, Polta JA, Wallace RA, Woulfe SR, Adams MD (1998) Development of a novel nonaromatic small-molecule MR contrast agent for the blood pool. Acad Radiol 5(Suppl 1): S210–3PubMedGoogle Scholar
  134. 134.
    Casali C, Janier M, Canet E, Obadia JF, Benderbous S, Corot C, Revel D (1998) Evaluation of Gd-DOTA-labeled dextran polymer as an intravascular MR contrast agent for myocardial perfusion. Acad Radiol, 5 [Suppl.]: S214–8PubMedGoogle Scholar
  135. 135.
    Dubno B, Wildermuth S, RomanowsM BJ, Borseth A, Annweier A, Debatin JF (1998) Open-label, phase I trial of a new blood pool contrast agent (NC100150) in 12 healthy volunteers: safety and vascular imaging characteristics. Magnetic Resonance Materials in Physics, Biology and Medicine 6(Suppl 1): 317Google Scholar
  136. 136.
    Loubeyre P, Zhao S, Canet E, Abidi H, Benderbous S, Revel D (1997) Ultrasmall superparamagnetic iron oxide particles (AMI 227) as a blood pool contrast agent for MR angiography: experimental study in rabbits. JMRI 7: 958–62PubMedGoogle Scholar
  137. 137.
    Bremerich J, Saeed M, Roberts TP, Wendland MF, Reddy GP, Higgins CB (1998) Blood pool MR contrast agent (NC100150 injection): demonstration of pulmonary vessels and perfusion with 3D-TOF MRI. 84th Scientific Assembly and Annual Meeting of the RSNA, 1388 Radiology [Suppl]Google Scholar
  138. 138.
    Weishaupt D, Hilfiker PR, Schmidt M, Debatin JF (1998) Pulmonary hemorrhage: imaging with a new MR blood pool agent in conjunction with breathheld 3D MRA — an experimental study. 84th Scientific Assembly and Annual Meeting of the RSNA if’s the abstract number 1396 Radiology (Suppl)Google Scholar
  139. 139.
    Taupitz M, Barentsz JO, Tuerk I, Beyersdorff D, Gleige B, Hamm BK (1998) MR lymphography using ultrasmall superparamagnetic iron oxide paricles (USPIO): results of a clinical phase III trial in 31 patients with urologie tumors. RSNA, p 865Google Scholar
  140. 140.
    Mugler III JP, Bogorad PL, Driehuys B, Brookeman JR: (1999) Nuclear magnetic resonance using hyperpolarized noble gases. J Magn Reson Analysis (submitted)Google Scholar
  141. 141.
    Mugler III JP, Brookeman JE, Knight-Scott J, Maier T, de Lange EE, Bogorad PL (1998) Regional measurement of the 3He diffusion coefficient in the human lung. Proc Intl Soc Mafm Reson Med, 6th MeetingGoogle Scholar
  142. 142.
    Albert MS, Cates GD, Driehuys B et al (1994) Biological magnetic resonance imaging using kser-pokrized 129Xe. Nature 370:199–201PubMedGoogle Scholar
  143. 143.
    MacFall JR, Charles HC, Black RD et al (1996) Human lung air spaces: potential for MR imaging with hyperpo-larized He-3. Radiology 200:553–8PubMedGoogle Scholar
  144. 144.
    Kauczor HU, Hofmann D, Kreitner KP et al (1996) Normal abnormal pulmonary ventilation: visualization at hyperpolarized He-3 MR imaging. Radiology 201: 564–8PubMedGoogle Scholar
  145. 145.
    De lange EE, Mugler III JP, Brookeman JR et al (1999) Lung airspaces: MR imaging evaluation with hyperpolarized helium-3 gas. Radiology 210 (in press)Google Scholar
  146. 146.
    Hagspiel KD (1999), Altes TA, Mugler JP 3rd et al: MR virtual colonography using hyperpokrized (3) He as an endolummal contrast agent demonstration of feasibility. Magn Reson Med. 2000 Nov; 44(5):813–6.PubMedGoogle Scholar
  147. 147.
    Chawla MS, Oxen XJ, Möller HE et al (1998) In vivo MR vascular imaging using laser-polarized 3He micro-bubbles. Proc Nati Acad Sci USA 95:10832–5Google Scholar
  148. 148.
    Albrecht T, Dawson P (1997) The use of gadolinium che-ktes as X-ray contrast agente in clinical studies. Eur Radiol ECR 7(Suppl 196)Google Scholar
  149. 149.
    Eloy R, Corot C, Belleville J (1991) Contrast media for angiography: physicochemical properties, pharmacoki-netics and biocompatibility. Clin Materials 7:89–197Google Scholar
  150. 150.
    Galanski M, Prokop M (1998) Granzkörper-computertomographie. Thieme, Stugprt, New YorkGoogle Scholar
  151. 151.
    Harris EW, LaMarca AJ, Kondroski EM, Murtagh FR, Clark RA (1982) Enhanced CT of the neck improved visualization of lesions with delayed imaging. AJR pp 167Google Scholar
  152. 152.
    Lawrence JA, Km D, Kent KC, Stehling MK, Rosen MP, Raptopouios V (1995) Lower extremity spiral CT angiography versus catheter angiography. Radiology 194:903–8PubMedGoogle Scholar
  153. 153.
    Millet PJ et al (1991) Effets électrocardiographiques des produits de contraste lors de la coronarographie. 2nd European Meeting on Contrast Media, LyonGoogle Scholar
  154. 154.
    Nambu K, Suzuki R, Hirakawa K (1995) Cerebral blood flow: measurement with Xenon-enhaneed dynamic helical CT. Radiology 195:53PubMedGoogle Scholar
  155. 155.
    Spinosa DJ, Matsumoto AH, Angle JF, Hagspiel KD (1998) Use of pdopentetate dimeglumine as a contrast agent for percutaneous trandluminal renal angioplasty in stent placement. Kidney Int 53(2): 503–7PubMedGoogle Scholar
  156. 156.
    Spinosa DJ, Matsumoto AH, Angle JF, Hagspiel KD, Isaacs RB, McCullough CS, Lobo PI (1998) Gadolinium-based contrast and carbon dioxide angiography to evaluate renal transplants for vascular causes of renal insufficiency and accelerated hypertension. JVIR 9:909–16PubMedGoogle Scholar
  157. 157.
    Buthiau D. et al (1991) TDM et IRM cliniques — Editions Frison — Roche — ParisGoogle Scholar

Copyright information

© Springer-Verlag France 2003

Authors and Affiliations

  • J. M. Frölich
  • K.D. Hagspiel

There are no affiliations available

Personalised recommendations