Skip to main content

La croissance de rattrapage consécutive au retard de croissance fœtale entraîne une restauration rapide de la masse grasse, mais sans conséquences métaboliques à l’âge d’un an

  • Chapter
  • 157 Accesses

Résumé

Contexte : il a été suggéré que le retard de croissance fœtale (RCF) suivi d’une prise de poids rapide en début de vie pourrait constituer la séquence initiale à l’origine de l’adiposité centrale et de l’insulinorésistance. Cependant, les liens entre croissance fœtale et croissance postnatale initiale avec les modifications métaboliques et anthropométriques qui y ont été associées n’ont guère été explorés.

Méthodologie et principaux résultats : les modifications d’indice de masse corporelle (IMC), d’épaisseur des plis cutanés et de concentrations hormonales ont été surveillées pendant la première année de vie postnatale chez 94 bébés dont la vitesse de croissance fœtale avait auparavant été mesurée par protocole échographique standardisé. Indépendamment de leur poids de naissance, 45 de ces nourrissons avaient présenté un retard de croissance fœtale (RCF+). La croissance des quatre premiers mois de vie s’est caractérisée par des modifications plus importantes du Z-score de l’IMC chez ces bébés RCF+ (+ 1,26 ± 21,2 contre + 0,58 ± 21,17 DS dans RCF-), avec pour résultat la restauration de l’IMC et de la masse grasse aux mêmes valeurs que dans le groupe RCF-, et ce, indépendamment des apports caloriques. À quatre mois, les vitesses de croissance étaient semblables ; les Z-scores de l’IMC ainsi que les pourcentages de masse grasse étaient toujours identiques À douze mois. Que ce soit À quatre ou À douze mois, la vitesse de croissance fœtale s’est avérée être un facteur prédictif indépendant du pourcentage de masse grasse chez les bébés RCF+. À l’âge d’un an, les insulinémies À jeun n’étaient pas différentes, mais le taux de leptine était significativement plus élevé dans le groupe RCF+ (4,43 ± 21,41 contre 2,63 ± 21 ng/ml dans le groupe RCF-).

Conclusion : la croissance de rattrapage initiale est corrélée à la croissance fœtale, quel que soit le poids de naissance. De même, après la naissance, elle est associée à une sensibilité plus importante à l’insuline et à un moindre taux de leptine. La croissance de rattrapage entraîne la restauration de la taille corporelle et des réserves adipeuses sans conséquences nocives à l’âge d’un an sur la composition de l’organisme ou le profil métabolique. Il se pourrait que le taux plus élevé de leptine observé à l’âge d’un an refl ète un équilibre énergétique positif chez les enfants ayant été soumis à un retard de croissance fœtale.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Ravelli GP, Stein ZA, Susser MW (1976) Obesity in young men after famine exposure in utero and early infancy. N Engl J Med 295: 349–53

    Article  CAS  PubMed  Google Scholar 

  2. Roseboom T, De Rooij S, Painter R (2006) The Dutch famine and its long-term consequences for adult health. Early Hum Dev 82: 485–91

    Article  PubMed  Google Scholar 

  3. Botton J, Heude B, Maccario J et al. (2008) Postnatal weight and height growth velocities at different ages between birth and 5 y and body composition in adolescent boys and girls. Am J Clin Nutr 87: 1760–8

    CAS  PubMed  Google Scholar 

  4. Chomtho S, Wells JC, Williams JE et al. (2008) Infant growth and later body composition: evidence from the 4-component model. Am J Clin Nutr 87: 1776–84

    CAS  PubMed  Google Scholar 

  5. Yliharsila H, Kajantie E, Osmond C et al. (2008) Body mass index during childhood and adult body composition in men and women aged 56–70 y. Am J Clin Nutr 87: 1769–75

    CAS  PubMed  Google Scholar 

  6. Ong KK, Ahmed ML, Emmett PM et al. (2000) Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. Bmj 320: 967–71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Ekelund U, Ong K, Linne Y et al. (2006) Upward weight percentile crossing in infancy and early childhood independently predicts fat mass in young adults: the Stockholm Weight Development Study (SWEDES). Am J Clin Nutr 83: 324–30

    CAS  PubMed  Google Scholar 

  8. Stettler N, Zemel BS, Kumanyika S, Stallings VA (2002) Infant weight gain and childhood overweight status in a multicenter, cohort study. Pediatrics 109: 194–9

    Article  PubMed  Google Scholar 

  9. Stettler N, Kumanyika SK, Katz SH et al. (2003) Rapid weight gain during infancy and obesity in young adulthood in a cohort of African Americans. Am J Clin Nutr 77: 1374–8

    CAS  PubMed  Google Scholar 

  10. Colle E, Schiff D, Andrew G et al. (1976) Insulin responses during catch-up growth of infants who were small for gestational age. Pediatrics 57: 363–71

    CAS  PubMed  Google Scholar 

  11. Ezzahir N, Alberti C, Deghmoun S et al. (2005) Time course of catch-up in adiposity influences adult anthropometry in individuals who were born small for gestational age. Pediatr Res 58: 243–7

    Article  PubMed  Google Scholar 

  12. Jaquet D, Deghmoun S, Chevenne D et al. (2005) Dynamic change in adiposity from fetal to postnatal life is involved in the metabolic syndrome associated with reduced fetal growth. Diabetologia 48: 849–55

    Article  CAS  PubMed  Google Scholar 

  13. Ibanez L, Suarez L, Lopez-Bermejo A et al. (2008) Early development of visceral fat excess after spontaneous catch-up growth in children with low birth weight. J Clin Endocrinol Metab 93: 925–8

    Article  CAS  PubMed  Google Scholar 

  14. Soto N, Bazaes RA, Pena V et al. (2003) Insulin sensitivity and secretion are related to catch-up growth in small-for-gestational-age infants at age 1 year: results from a prospective cohort. J Clin Endocrinol Metab 88: 3645–50

    Article  CAS  PubMed  Google Scholar 

  15. Larsen T, Greisen G, Petersen S (1997) Intrauterine growth correlation to postnatal growth-influence of risk factors and complications in pregnancy. Early Hum Dev 47: 157–65

    Article  CAS  PubMed  Google Scholar 

  16. Ekelund U, Ong KK, Linne Y et al. (2007) Association of weight gain in infancy and early childhood with metabolic risk in young adults. J Clin Endocrinol Metab 92: 98–103

    Article  CAS  PubMed  Google Scholar 

  17. Law CM, Shiell AW, Newsome CA et al. (2002) Fetal, infant, and childhood growth and adult blood pressure: a longitudinal study from birth to 22 years of age. Circulation 105: 1088–92

    Article  CAS  PubMed  Google Scholar 

  18. Barker DJ, Osmond C, Forsen TJ et al. (2005) Trajectories of growth among children who have coronary events as adults. N Engl J Med 353: 1802–9

    Article  CAS  PubMed  Google Scholar 

  19. Gardosi J, Mongelli M, Wilcox M, Chang A (1995) An adjustable fetal weight standard. Ultrasound Obstet Gynecol 6: 168–74

    Article  CAS  PubMed  Google Scholar 

  20. Beltrand J, Verkauskiene R, Nicolescu R et al. (2008) Adaptive changes in neonatal hormonal and metabolic profiles induced by fetal growth restriction. J Clin Endocrinol Metab 93: 4027–32

    Article  CAS  PubMed  Google Scholar 

  21. Beltrand J, Alison M, Nicolescu R et al. (2008) Bone mineral content at birth is determined both by birth weight and fetal growth pattern. Pediatr Res 64: 86–90

    Article  PubMed  Google Scholar 

  22. Hadlock FP, Harrist RB, Sharman RS et al. (1985) Estimation of fetal weight with the use of head, body, and femur measurements—a prospective study. Am J Obstet Gynecol 151: 333–7

    Article  CAS  PubMed  Google Scholar 

  23. Gardosi J, Chang A, Kalyan B et al. (1992) Customised antenatal growth charts. Lancet 339: 283–7

    Article  CAS  PubMed  Google Scholar 

  24. Rodriguez G, Samper MP, Olivares JL et al. (2005) Skinfold measurements at birth: sex and anthropometric influence. Arch Dis Child Fetal Neonatal Ed 90: F273–5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Rolland-Cachera MF, Cole TJ, Sempe M et al. (1991) Body Mass Index variations: centiles from birth to 87 years. Eur J Clin Nutr 45: 13–21

    CAS  PubMed  Google Scholar 

  26. Sempe M (1977) Study of growth from birth to 18 months. Arch Fr Pediatr 34: 687–8

    CAS  PubMed  Google Scholar 

  27. Brook CG (1971) Determination of body composition of children from skinfold measurements. Arch Dis Child 46: 182–4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Siri WE (1956) The gross composition of the body. Adv Biol Med Phys 4: 239–80

    Article  CAS  PubMed  Google Scholar 

  29. Rolland-Cachera MF, Brambilla P, Manzoni P et al. (1997) Body composition assessed on the basis of arm circumference and triceps skinfold thickness: a new index validated in children by magnetic resonance imaging. Am J Clin Nutr 65: 1709–13

    CAS  PubMed  Google Scholar 

  30. Leroy B, Lefort F (1971) The weight and size of newborn infants at birth. Rev Fr Gynecol Obstet 66: 391–6

    CAS  PubMed  Google Scholar 

  31. Katz A, Nambi SS, Mather K et al. (2000) Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab 85: 2402–10

    Article  CAS  PubMed  Google Scholar 

  32. Hokken-Koelega AC, De Ridder MA, Lemmen RJ et al. (1995) Children born small for gestational age: do they catch up? Pediatr Res 38: 267–71

    Article  CAS  PubMed  Google Scholar 

  33. Veening MA, Van Weissenbruch MM, Delemarre-Van De Waal HA (2002) Glucose tolerance, insulin sensitivity, and insulin secretion in children born small for gestational age. J Clin Endocrinol Metab 87: 4657–61

    Article  CAS  PubMed  Google Scholar 

  34. Leunissen RW, Oosterbeek P, Hol LK et al. (2008) Fat Mass Accumulation during Childhood Determines Insulin Sensitivity in Early Adulthood. J Clin Endocrinol Metab 93: 445–51

    Article  CAS  PubMed  Google Scholar 

  35. Ibanez L, Ong K, Dunger DB, De Zegher F (2006) Early development of adiposity and insulin resistance after catch-up weight gain in small-for-gestational-age children. J Clin Endocrinol Metab 91: 2153–8

    Article  CAS  PubMed  Google Scholar 

  36. Gluckman PD, Hanson MA (2004) Living with the past: evolution, development, and patterns of disease. Science 305: 1733–6

    Article  CAS  PubMed  Google Scholar 

  37. Mantzoros CS, Rifas-Shiman SL, Williams CJ et al. (2009) Cord blood leptin and adiponectin as predictors of adiposity in children at 3 years of age: a prospective cohort study. Pediatrics 123: 682–9

    Article  PubMed Central  PubMed  Google Scholar 

  38. Brennan AM, Mantzoros CS (2006) Drug Insight: the role of leptin in human physiology and pathophysiology—emerging clinical applications. Nat Clin Pract Endocrinol Metab 2: 318–27

    Article  CAS  PubMed  Google Scholar 

  39. Chan JL, Heist K, De Paoli AM et al. (2003) The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men. J Clin Invest 111: 1409–21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Jaquet D, Leger J, Tabone MD et al. (1999) High serum leptin concentrations during catch-up growth of children born with intrauterine growth retardation. J Clin Endocrinol Metab 84: 1949–53

    CAS  PubMed  Google Scholar 

  41. Bazaes RA, Salazar TE, Pittaluga E et al. (2003) Glucose and lipid metabolism in small for gestational age infants at 48 hours of age. Pediatrics 111: 804–9

    Article  PubMed  Google Scholar 

  42. Schubring C, Siebler T, Kratzsch J et al. (1999) Leptin serum concentrations in healthy neonates within the first week of life: relation to insulin and growth hormone levels, skinfold thickness, body mass index and weight. Clin Endocrinol (Oxf) 51: 199–204

    Article  CAS  Google Scholar 

  43. Bouret SG, Draper SJ, Simerly RB (2004) Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304: 108–10

    Article  CAS  PubMed  Google Scholar 

  44. Bouret SG, Simerly RB (2007) Development of Leptin-Sensitive Circuits. J Neuroendocrinol 19: 575–82

    Article  CAS  PubMed  Google Scholar 

  45. Ikenasio-Thorpe BA, Breier BH, Vickers MH, Fraser M (2007) Prenatal influences on susceptibility to diet-induced obesity are mediated by altered neuroendocrine gene expression. J Endocrinol 193: 31–7

    Article  CAS  PubMed  Google Scholar 

  46. Martinez-Aguayo A, Capurro T, Pena V et al. (2007) Comparison of leptin levels, body composition and insulin sensitivity and secretion by OGTT in healthy, early pubertal girls born at either appropriate-or small-for-gestational age. Clin Endocrinol (Oxf) 67: 526–32

    CAS  Google Scholar 

  47. Vickers MH, Gluckman PD, Coveny AH et al. (2005) Neonatal leptin treatment reverses developmental programming. Endocrinology 146: 4211–6

    Article  CAS  PubMed  Google Scholar 

  48. Singhal A, Cole TJ, Fewtrell M et al. (2004) Is slower early growth beneficial for long-term cardiovascular health? Circulation 109: 1108–13

    Article  PubMed  Google Scholar 

  49. Singhal A, Cole TJ, Fewtrell M et al. (2007) Promotion of faster weight gain in infants born small for gestational age: is there an adverse effect on later blood pressure? Circulation 115: 213–20

    Article  PubMed  Google Scholar 

  50. Singhal A, Fewtrell M, Cole TJ, Lucas A (2003) Low nutrient intake and early growth for later insulin resistance in adolescents born preterm. Lancet 361: 1089–97

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Beltrand, J. et al. (2012). La croissance de rattrapage consécutive au retard de croissance fœtale entraîne une restauration rapide de la masse grasse, mais sans conséquences métaboliques à l’âge d’un an. In: Le Bouc, Y., Tauber, M. (eds) Aspects biologiques, moléculaires et cliniques de l’axe GH/IGF-I. Springer, Paris. https://doi.org/10.1007/978-2-8178-0196-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0196-4_13

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0195-7

  • Online ISBN: 978-2-8178-0196-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics