Skip to main content

Monitorage hémodynamique de l’état de choc septique

  • Chapter
Sepsis grave et choc septique

Part of the book series: Le point sur … ((POINT))

  • 677 Accesses

Résumé

La défaillance circulatoire occupe une position centrale dans le sepsis sévère et l’état de choc septique puisqu’elle en conditionne l’existence. Se distinguant de la défaillance micro circulatoire qui fait l’objet d’un axe de recherche fondamentale et clinique prometteur, nous n’envisagerons que la défaillance macro circulatoire. Celle-ci concerne l’ensemble des paramètres hémodynamiques, tant la volémie vraie ou relative que la fonction myocardique systémique ou pulmonaire. Cette défaillance macro circulatoire peut ainsi revêtir tous les aspects hémodynamiques, sans compter l’addition des comorbidités cardio circulatoires de patients de réanimation toujours plus âgés. Monitorer une telle défaillance est dans ce contexte une nécessité. Mais comment choisir, devant le large panel des moniteurs proposés, celui qui répondra le mieux à nos questions?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Réfénces

  1. Levy MM, Fink MP, Marshall JC et al. (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 31: 1250–6

    Article  PubMed  Google Scholar 

  2. Dellinger RP, Levy MM, Carlet JM et al. (2008) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock. Intensive Care Med 34: 17–60

    Article  PubMed  Google Scholar 

  3. Astiz ME, Rackow EC (1998) Septic shock. Lancet 351: 1501–5

    Article  PubMed  CAS  Google Scholar 

  4. Ince C, Sinaasappel M (1999) Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med 27: 1369–77

    Article  PubMed  CAS  Google Scholar 

  5. Dellinger RP (2003) Cardiovascular management of septic shock. Crit Care Med 31: 946–55

    Article  PubMed  Google Scholar 

  6. Practice parameters for hemodynamic support of sepsis in adult patients in sepsis. Task Force of the American College of Critical Care Medicine, Society of Critical Care Medicine (1999) Crit Care Med 27: 639–60

    Google Scholar 

  7. Bendjelid K, Romand JA (2003) Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care. Intensive Care Med 29: 352–60

    Article  PubMed  Google Scholar 

  8. Potkin RT, Hudson LD, Weaver LJ, Trobaugh G (1987) Effect of positive end-expiratory pressure on right and left ventricular function in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 135: 307–11

    PubMed  CAS  Google Scholar 

  9. Rivers E, Nguyen B, Havstad S et al. (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345: 1368–77

    Article  PubMed  CAS  Google Scholar 

  10. Guyton AC (1967) Regulation of cardiac output. N Engl J Med 277: 805–12

    Article  PubMed  CAS  Google Scholar 

  11. McGee S, Abernethy WB, 3rd, Simel DL (1999) The rational clinical examination. Is this patient hypovolemic? Jama 281: 1022–9

    Article  PubMed  CAS  Google Scholar 

  12. Shippy CR, Appel PL, Shoemaker WC (1984) Reliability of clinical monitoring to assess blood volume in critically ill patients. Crit Care Med 12: 107–12

    Article  PubMed  CAS  Google Scholar 

  13. Michard F, Teboul JL (2000) Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care 4: 282–9

    Article  PubMed  CAS  Google Scholar 

  14. Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 121: 2000–8

    Article  PubMed  Google Scholar 

  15. Duranteau J, Sitbon P, Teboul JL et al. (1999) Effects of epinephrine, norepinephrine, or the combination of norepinephrine and dobutamine on gastric mucosa in septic shock. Crit Care Med 27: 893–900

    Article  PubMed  CAS  Google Scholar 

  16. Cariou A, Monchi M, Dhainaut JF (1998) Continuous cardiac output and mixed venous oxygen saturation monitoring. J Crit Care 13: 198–213

    Article  PubMed  CAS  Google Scholar 

  17. Hayes MA, Timmins AC, Yau EH et al. (1997) Oxygen transport patterns in patients with sepsis syndrome or septic shock: influence of treatment and relationship to outcome. Crit Care Med 25: 926–36

    Article  PubMed  CAS  Google Scholar 

  18. Steffes CP, Dahn MS, Lange MP (1994) Oxygen transport-dependent splanchnic metabolism in the sepsis syndrome. Arch Surg 129: 46–52

    Article  PubMed  CAS  Google Scholar 

  19. Boekstegers P, Weidenhofer S, Pilz G, Werdan K (1991) Peripheral oxygen availability within skeletal muscle in sepsis and septic shock: comparison to limited infection and cardiogenic shock. Infection 19: 317–23

    Article  PubMed  CAS  Google Scholar 

  20. Bakker J, Coffernils M, Leon M et al. (1991) Blood lactate levels are superior to oxygenderived variables in predicting outcome in human septic shock. Chest 99: 956–62

    Article  PubMed  CAS  Google Scholar 

  21. Stoddard MF, Prince CR, Ammash N et al. (1993) Pulsed Doppler transesophageal echocardiographic determination of cardiac output in human beings: comparison with thermodilution technique. Am Heart J 126: 956–62

    Article  PubMed  CAS  Google Scholar 

  22. Darmon PL, Hillel Z, Mogtader A, Thys DM (1996) A study of the human aortic valve orifice by transesophageal echocardiography. J Am Soc Echocardiogr 9: 668–74

    Article  PubMed  CAS  Google Scholar 

  23. Coats AJ (1990) Doppler ultrasonic measurement of cardiac output: reproducibility and validation. Eur Heart J 11 (suppl I): 49–61

    Article  PubMed  Google Scholar 

  24. Lewis JF, Kuo LC, Nelson JG et al. (1984) Pulsed Doppler echocardiographic determination of stroke volume and cardiac output: clinical validation of two new methods using the apical window. Circulation 70: 425–31

    Article  PubMed  CAS  Google Scholar 

  25. McLean AS, Needham A, Stewart D, Parkin R (1997) Estimation of cardiac output by noninvasive echocardiographic techniques in the critically ill subject. Anaesth Intensive Care 25: 250–4

    PubMed  CAS  Google Scholar 

  26. Descorps-Declere A, Smail N, Vigue B et al. (1996) Transgastric, pulsed Doppler echocardiographic determination of cardiac output. Intensive Care Med 22: 34–8

    Article  PubMed  CAS  Google Scholar 

  27. Bettex DA, Hinselmann V, Hellermann JP et al. (2004) Transoesophageal echocardiography is unreliable for cardiac output assessment after cardiac surgery compared with thermodilution. Anaesthesia 59: 1184–92

    Article  PubMed  CAS  Google Scholar 

  28. Etchecopar-Chevreuil C, Francois B, Clavel M et al. (2008) Cardiac morphological and functional changes during early septic shock: a transesophageal echocardiographic study. Intensive Care Med 34: 250–6

    Article  PubMed  Google Scholar 

  29. Vieillard-Baron A, Charron C, Chergui K et al. (2006) Bedside echocardiographic evaluation of hemodynamics in sepsis: is a qualitative evaluation sufficient? Intensive Care Med 32: 1547–52

    Article  PubMed  Google Scholar 

  30. Clements FM, Harpole DH, Quill T et al. (1990) Estimation of left ventricular volume and ejection fraction by two-dimensional transoesophageal echocardiography: comparison of short axis imaging and simultaneous radionuclide angiography. Br J Anaesth 64: 331–6

    Article  PubMed  CAS  Google Scholar 

  31. Ellrodt AG, Riedinger MS, Kimchi A et al. (1985) Left ventricular performance in septic shock: reversible segmental and global abnormalities. Am Heart J 110: 402–9

    Article  PubMed  CAS  Google Scholar 

  32. Vieillard-Baron A, Caille V, Charron C et al. (2008) Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med 36: 1701–6

    Article  PubMed  Google Scholar 

  33. Grocott-Mason RM, Shah AM (1998) Cardiac dysfunction in sepsis: new theories and clinical implications. Intensive Care Med 24: 286–95

    Article  PubMed  CAS  Google Scholar 

  34. Ozier Y, Gueret P, Jardin F et al. (1984) Two-dimensional echocardiographic demonstration of acute myocardial depression in septic shock. Crit Care Med 12: 596–9

    Article  PubMed  CAS  Google Scholar 

  35. Jardin F, Brun-Ney D, Auvert B et al. (1990) Sepsis-related cardiogenic shock. Crit Care Med 18: 1055–60

    Article  PubMed  CAS  Google Scholar 

  36. Bouhemad B, Nicolas-Robin A, Arbelot C et al. (2009) Acute left ventricular dilatation and shock-induced myocardial dysfunction. Crit Care Med 37: 441–7

    Article  PubMed  Google Scholar 

  37. Poelaert J, Declerck C, Vogelaers D et al. (1997) Left ventricular systolic and diastolic function in septic shock. Intensive Care Med 23: 553–60

    Article  PubMed  CAS  Google Scholar 

  38. Jafri SM, Lavine S, Field BE et al. (1990) Left ventricular diastolic function in sepsis. Crit Care Med 18: 709–14

    Article  PubMed  CAS  Google Scholar 

  39. Munt B, Jue J, Gin K et al. (1998) Diastolic filling in human severe sepsis: an echocardiographic study. Crit Care Med 26: 1829–33

    Article  PubMed  CAS  Google Scholar 

  40. Bouhemad B, Nicolas-Robin A, Arbelot C et al. (2008) Isolated and reversible impairment of ventricular relaxation in patients with septic shock. Crit Care Med 36: 766–74

    Article  PubMed  Google Scholar 

  41. Cariou A, Pinsky MR, Monchi M et al. (2008) Is myocardial adrenergic responsiveness depressed in human septic shock? Intensive Care Med 34: 917–22

    Article  PubMed  Google Scholar 

  42. Fernandes CJ (2007) Sepsis-induced myocardial depression: where is the missing link? Crit Care Med 35: 972–3

    Article  PubMed  Google Scholar 

  43. Parker MM, Shelhamer JH, Bacharach SL et al. (1984) Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 100: 483–90

    Article  PubMed  CAS  Google Scholar 

  44. Vieillard Baron A, Schmitt JM, Beauchet A et al. (2001) Early preload adaptation in septic shock? A transesophageal echocardiographic study. Anesthesiology 94: 400–6

    Article  PubMed  CAS  Google Scholar 

  45. Scheuren K, Wente MN, Hainer C et al. (2009) Left ventricular end-diastolic area is a measure of cardiac preload in patients wiThearly septic shock. Eur J Anaesthesiol 26: 759–65

    Article  PubMed  Google Scholar 

  46. Vargas F, Gruson D, Valentino R et al. (2004) Transesophageal Pulsed Doppler echocardiography of pulmonary venous flow to assess left ventricular filling pressure in ventilated patients with acute respiratory distress syndrome. J Crit Care 19: 187–97

    Article  PubMed  Google Scholar 

  47. Vignon P (2006) Évaluation non invasive des la PAPO par échocardiographie-doppler chez les patients ventilés: quelle est sa précision et l’apport des nouvelles techniques? Réanimation 15: S235

    Google Scholar 

  48. Chirillo F, Brunazzi MC, Barbiero M et al. (1997) Estimating mean pulmonary wedge pressure in patients with chronic atrial fibrillation from transthoracic Doppler indexes of mitral and pulmonary venous flow velocity. J Am Coll Cardiol 30: 19–26

    Article  PubMed  CAS  Google Scholar 

  49. Feissel M, Michard F, Mangin I et al. (2001) Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest 119: 867–73

    Article  PubMed  CAS  Google Scholar 

  50. Feissel M, Michard F, Faller JP, Teboul JL (2004) The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med 30: 1834–7

    Article  PubMed  Google Scholar 

  51. Barbier C, Loubieres Y, Schmit C et al. (2004) Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med 30: 1740–6

    PubMed  Google Scholar 

  52. Vieillard-Baron A, Chergui K, Rabiller A et al. (2004) Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med 30: 1734–9

    PubMed  Google Scholar 

  53. Lamia B, Ochagavia A, Monnet X et al. (2007) Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneously breathing activity. Intensive Care Med 33: 1125–32

    Article  PubMed  Google Scholar 

  54. Maizel J, Airapetian N, Lorne E et al. (2007) Diagnosis of central hypovolemia by using passive leg raising. Intensive Care Med 33: 1133–8

    Article  PubMed  Google Scholar 

  55. Parker MM, McCarthy KE, Ognibene FP, Parrillo JE (1990) Right ventricular dysfunction and dilatation, similar to left ventricular changes, characterize the cardiac depression of septic shock in humans. Chest 97: 126–31

    Article  PubMed  CAS  Google Scholar 

  56. Kimchi A, Ellrodt AG, Berman DS et al. (1984) Right ventricular performance in septic shock: a combined radionuclide and hemodynamic study. J Am Coll Cardiol 4: 945–51

    Article  PubMed  CAS  Google Scholar 

  57. Vitolo E, Castini D, Colombo A et al. (1988) Two-dimensional echocardiographic evaluation of right ventricular ejection fraction: comparison between three different methods. Acta Cardiol 43: 469–80

    PubMed  CAS  Google Scholar 

  58. Triulzi (1984) Normal adult crosssectionnal echocardiographic values: linear dimensions and chamber areas. Echocardiography 1: 403–26

    Article  Google Scholar 

  59. Kaul S, Tei C, Hopkins JM, Shah PM (1984) Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J 107: 526–31

    Article  PubMed  CAS  Google Scholar 

  60. Meluzin J, Spinarova L, Bakala J et al. (2001) Pulsed Doppler tissue imaging of the velocity of tricuspid annular systolic motion; a new, rapid, and non-invasive method of evaluating right ventricular systolic function. Eur Heart J 22: 340–8

    Article  PubMed  CAS  Google Scholar 

  61. Nagueh SF, Kopelen HA, Zoghbi WA (1996) Relation of mean right atrial pressure to echocardiographic and Doppler parameters of right atrial and right ventricular function. Circulation 93: 1160–9

    Article  PubMed  CAS  Google Scholar 

  62. Nageh MF, Kopelen HA, Zoghbi WA et al. (1999) Estimation of mean right atrial pressure using tissue Doppler imaging. Am J Cardiol 84: 1448–51, A8

    Article  PubMed  CAS  Google Scholar 

  63. Swan HJ, Ganz W, Forrester J et al. (1970) Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med 283: 447–51

    Article  PubMed  CAS  Google Scholar 

  64. Ganz W, Donoso R, Marcus HS et al. (1971) A new technique for measurement of cardiac output by thermodilution in man. Am J Cardiol 27: 392–6

    Article  PubMed  CAS  Google Scholar 

  65. Wheeler AP, Bernard GR, Thompson BT et al. (2006) Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med 354: 2213–24

    Article  PubMed  Google Scholar 

  66. Sakr Y, Vincent JL, Reinhart K et al. (2005) Use of the pulmonary artery catheter is not associated with worse outcome in the ICU. Chest 128: 2722–31

    Article  PubMed  Google Scholar 

  67. Rhodes A, Cusack RJ, Newman PJ et al. (2002) A randomised, controlled trial of the pulmonary artery catheter in critically ill patients. Intensive Care Med 28: 256–64

    Article  PubMed  Google Scholar 

  68. Murdoch SD, Cohen AT, Bellamy MC (2000) Pulmonary artery catheterization and mortality in critically ill patients. Br J Anaesth 85: 611–5

    Article  PubMed  CAS  Google Scholar 

  69. Mimoz O, Rauss A, Rekik N et al. (1994) Pulmonary artery catheterization in critically ill patients: a prospective analysis of outcome changes associated with catheter-prompted changes in therapy. Crit Care Med 22: 573–9

    Article  PubMed  CAS  Google Scholar 

  70. Weisel RD, Berger RL, Hechtman HB (1975) Current concepts measurement of cardiac output by thermodilution. N Engl J Med 292: 682–4

    Article  PubMed  CAS  Google Scholar 

  71. Jansen JR, Schreuder JJ, Settels JJ et al. (1990) An adequate strategy for the thermodilution technique in patients during mechanical ventilation. Intensive Care Med 16: 422–5

    Article  PubMed  CAS  Google Scholar 

  72. Okamoto K, Komatsu T, Kumar V et al. (1986) Effects of intermittent positive-pressure ventilation on cardiac output measurements by thermodilution. Crit Care Med 14: 977–80

    Article  PubMed  CAS  Google Scholar 

  73. Synder JV, Powner DJ (1982) Effects of mechanical ventilation on the measurement of cardiac output by thermodilution. Crit Care Med 10: 677–82

    Article  PubMed  CAS  Google Scholar 

  74. Yelderman ML, Ramsay MA, Quinn MD et al. (1992) Continuous thermodilution cardiac output measurement in intensive care unit patients. J Cardiothorac Vasc Anesth 6: 270–4

    Article  PubMed  CAS  Google Scholar 

  75. Jacquet L, Hanique G, Glorieux D et al. (1996) Analysis of the accuracy of continuous thermodilution cardiac output measurement. Comparison with intermittent thermodilution and Fick cardiac output measurement. Intensive Care Med 22: 1125–9

    Article  PubMed  CAS  Google Scholar 

  76. Sun Q, Rogiers P, Pauwels D, Vincent JL (2002) Comparison of continuous thermodilution and bolus cardiac output measurements in septic shock. Intensive Care Med 28: 1276–80

    Article  PubMed  Google Scholar 

  77. Mihm FG, Gettinger A, Hanson CW et al. (1998) A multicenter evaluation of a new continuous cardiac output pulmonary artery catheter system. Crit Care Med 26: 1346–50

    Article  PubMed  CAS  Google Scholar 

  78. Ousmane M (2003) Utilisation de la SvO2. Réanimation 12: 109–116

    Article  Google Scholar 

  79. Teboul J (2004) Indicateurs du remplissage vasculaire au cours de l’insuffisance circulatoire. Réanimation 13: 255–63

    Article  Google Scholar 

  80. Tavernier B, Makhotine O, Lebuffe G et al. (1998) Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89: 1313–21

    Article  PubMed  CAS  Google Scholar 

  81. Michard F, Boussat S, Chemla D et al. (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162: 134–8

    Article  PubMed  CAS  Google Scholar 

  82. Connors AF, Jr., McCaffree DR, Gray BA (1983) Evaluation of right-heart catheterization in the critically ill patient without acute myocardial infarction. N Engl J Med 308: 263–7

    Article  PubMed  Google Scholar 

  83. Cigarroa RG, Lange RA, Williams RH et al. (1989) Underestimation of cardiac output by thermodilution in patients with tricuspid regurgitation. Am J Med 86: 417–20

    Article  PubMed  CAS  Google Scholar 

  84. Balik M, Pachl J, Hendl J et al. (2002) Effect of the degree of tricuspid regurgitation on cardiac output measurements by thermodilution. Intensive Care Med 28: 1117–21

    Article  PubMed  Google Scholar 

  85. Artucio H, Hurtado J, Zimet L et al. (1997) PEEP-induced tricuspid regurgitation

    Google Scholar 

  86. Wetzel RC, Latson TW (1985) Major errors in thermodilution cardiac output measurement during rapid volume infusion. Anesthesiology 62: 684–7

    Article  PubMed  CAS  Google Scholar 

  87. Gnaegi A, Feihl F, Perret C (1997) Intensive care physicians’ insufficient knowledge of right-heart catheterization at the bedside: time to act? Crit Care Med 25: 213–20

    Article  PubMed  CAS  Google Scholar 

  88. Iberti TJ, Fischer EP, Leibowitz AB et al. (1990) A multicenter study of physicians’ knowledge of the pulmonary artery catheter. Pulmonary Artery Catheter Study Group. Jama 264: 2928–32

    Article  PubMed  CAS  Google Scholar 

  89. Chawla LS, Zia H, Gutierrez G et al. (2004) Lack of equivalence between central and mixed venous oxygen saturation. Chest 126: 1891–6

    Article  PubMed  Google Scholar 

  90. Varpula M, Karlsson S, Ruokonen E, Pettila V (2006) Mixed venous oxygen saturation cannot be estimated by central venous oxygen saturation in septic shock. Intensive Care Med 32: 1336–43

    Article  PubMed  Google Scholar 

  91. Reinhart K, Kuhn HJ, Hartog C, Bredle DL (2004) Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med 30: 1572–8

    Article  PubMed  Google Scholar 

  92. Perner A, Haase N, Wiis J et al. (2010) Central venous oxygen saturation for the diagnosis of low cardiac output in septic shock patients. Acta Anaesthesiol Scand 54: 98–102

    Article  PubMed  CAS  Google Scholar 

  93. Weil MH, Henning RJ (1979) New concepts in the diagnosis and fluid treatment of circulatory shock. Thirteenth annual Becton, Dickinson and Company Oscar Schwidetsky Memorial Lecture. Anesth Analg 58: 124–32

    Article  PubMed  CAS  Google Scholar 

  94. Ritter S, Rudiger A, Maggiorini M (2009) Transpulmonary thermodilution-derived cardiac function index identifies cardiac dysfunction in acute heart failure and septic patients: an observational study. Crit Care 13: R133

    Article  PubMed  Google Scholar 

  95. Goedje O, Hoeke K, Lichtwarck-Aschoff M et al. (1999) Continuous cardiac output by femoral arterial thermodilution calibrated pulse contour analysis: comparison with pulmonary arterial thermodilution. Crit Care Med 27: 2407–12

    Article  PubMed  CAS  Google Scholar 

  96. Berkenstadt H, Margalit N, Hadani M et al. (2001) Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg 92: 984–9

    Article  PubMed  CAS  Google Scholar 

  97. Perner A, Faber T (2006) Stroke volume variation does not predict fluid responsiveness in patients with septic shock on pressure support ventilation. Acta Anaesthesiol Scand 50: 1068–73

    Article  PubMed  CAS  Google Scholar 

  98. Sakka SG, Ruhl CC, Pfeiffer UJ et al. (2000) Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 26: 180–7

    Article  PubMed  CAS  Google Scholar 

  99. Goedje O, Seebauer T, Peyerl M et al. (2000) Hemodynamic monitoring by doubleindicator dilution technique in patients after orthotopic heart transplantation. Chest 118: 775–81

    Article  PubMed  CAS  Google Scholar 

  100. Godje O, Peyerl M, Seebauer T et al. (1998) Central venous pressure, pulmonary capillary wedge pressure and intrathoracic blood volumes as preload indicators in cardiac surgery patients. Eur J Cardiothorac Surg 13: 533–9; discussion 539-40

    Article  PubMed  CAS  Google Scholar 

  101. Wiedemann HP, Wheeler AP, Bernard GR et al. (2006) Comparison of two fluidmanagement strategies in acute lung injury. N Engl J Med 354: 2564–75

    Article  PubMed  CAS  Google Scholar 

  102. Martin GS, Eaton S, Mealer M, Moss M (2005) Extravascular lung water in patients with severe sepsis: a prospective cohort study. Crit Care 9: R74–82

    Article  PubMed  Google Scholar 

  103. Easley RB, Mulreany DG, Lancaster CT et al. (2009) Redistribution of pulmonary blood flow impacts thermodilution-based extravascular lung water measurements in a model of acute lung injury. Anesthesiology 111: 1065–74

    Article  PubMed  Google Scholar 

  104. Linton RA, Band DM, Haire KM (1993) A new method of measuring cardiac output in man using lithium dilution. Br J Anaesth 71: 262–6

    Article  PubMed  CAS  Google Scholar 

  105. Kurita T, Morita K, Kato S et al. (1997) Comparison of the accuracy of the lithium dilution technique with the thermodilution technique for measurement of cardiac output. Br J Anaesth 79: 770–5

    Article  PubMed  CAS  Google Scholar 

  106. Critchley LA, Critchley JA (1999) A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput 15: 85–91

    Article  PubMed  CAS  Google Scholar 

  107. Opdam HI, Wan L, Bellomo R (2007) A pilot assessment of the FloTrac cardiac output monitoring system. Intensive Care Med 33: 344–9

    Article  PubMed  Google Scholar 

  108. Mayer J, Boldt J, Schollhorn T et al. (2007) Semi-invasive monitoring of cardiac output by a new device using arterial pressure waveform analysis: a comparison with intermittent pulmonary artery thermodilution in patients undergoing cardiac surgery. Br J Anaesth 98: 176–82

    Article  PubMed  CAS  Google Scholar 

  109. Mayer J, Boldt J, Poland R et al. (2009) Continuous arterial pressure waveform-based cardiac output using the FloTrac/Vigileo: a review and meta-analysis. J Cardiothorac Vasc Anesth 23: 401–6

    Article  PubMed  Google Scholar 

  110. Eleftheriadis S, Galatoudis Z, Didilis V et al. (2009) Variations in arterial blood pressure are associated with parallel changes in FlowTrac/Vigileo-derived cardiac output measurements: a prospective comparison study. Crit Care 13: R179

    Article  PubMed  Google Scholar 

  111. Sakka SG, Kozieras J, Thuemer O, van Hout N (2007) Measurement of cardiac output: a comparison between transpulmonary thermodilution and uncalibrated pulse contour analysis. Br J Anaesth 99: 337–42

    Article  PubMed  CAS  Google Scholar 

  112. Biais M, Nouette-Gaulain K, Cottenceau V et al. (2008) Cardiac output measurement in patients undergoing liver transplantation: pulmonary artery catheter versus uncalibrated arterial pressure waveform analysis. Anesth Analg 106: 1480–6

    Article  PubMed  Google Scholar 

  113. Cannesson M, Musard H, Desebbe O et al. (2009) The ability of stroke volume variations obtained with Vigileo/FloTrac system to monitor fluid responsiveness in mechanically ventilated patients. Anesth Analg 108: 513–7

    Article  PubMed  Google Scholar 

  114. Biais M, Nouette-Gaulain K, Cottenceau V et al. (2008) Uncalibrated pulse contourderived stroke volume variation predicts fluid responsiveness in mechanically ventilated patients undergoing liver transplantation. Br J Anaesth 101: 761–8

    Article  PubMed  CAS  Google Scholar 

  115. Derichard A, Robin E, Tavernier B et al. (2009) Automated pulse pressure and stroke volume variations from radial artery: evaluation during major abdominal surgery. Br J Anaesth 103: 678–84

    Article  PubMed  CAS  Google Scholar 

  116. Monge Garcia MI, Gil Cano A, Diaz Monrove JC (2009) Brachial artery peak velocity variation to predict fluid responsiveness in mechanically ventilated patients. Crit Care 13: R142

    Article  PubMed  Google Scholar 

  117. Jardin F, Farcot JC, Gueret P et al. (1983) Cyclic changes in arterial pulse during respiratory support. Circulation 68: 266–74

    Article  PubMed  CAS  Google Scholar 

  118. Chemla D, Hebert JL, Coirault C et al. (1998) Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am J Physiol 274: H500–5

    PubMed  CAS  Google Scholar 

  119. Michard F, Chemla D, Richard C et al. (1999) Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic Effects of PEEP. Am J Respir Crit Care Med 159: 935–9

    Article  PubMed  CAS  Google Scholar 

  120. Boulain T, Achard JM, Teboul JL et al. (2002) Changes in BP induced by passive leg raising predict response to fluid loading in critically ill patients. Chest 121: 1245–52

    Article  PubMed  Google Scholar 

  121. Davies JN, Allen DR, Chant AD (1991) Non-invasive Doppler-derived cardiac output: a validation study comparing this technique with thermodilution and Fick methods. Eur J Vasc Surg 5: 497–500

    Article  PubMed  CAS  Google Scholar 

  122. Feinberg MS, Hopkins WE, Davila-Roman VG, Barzilai B (1995) Multiplane transesophageal echocardiographic doppler imaging accurately determines cardiac output measurements in critically ill patients. Chest 107: 769–73

    Article  PubMed  CAS  Google Scholar 

  123. Cariou A, Monchi M, Joly LM et al. (1998) Noninvasive cardiac output monitoring by aortic blood flow determination: evaluation of the Sometec Dynemo-3000 system. Crit Care Med 26: 2066–72

    Article  PubMed  CAS  Google Scholar 

  124. Monnet X, Rienzo M, Osman D et al. (2005) Esophageal Doppler monitoring predicts fluid responsiveness in critically ill ventilated patients. Intensive Care Med 31: 1195–201

    Article  PubMed  Google Scholar 

  125. Kolkman JJ, Otte JA, Groeneveld AB (2000) Gastrointestinal luminal PCO2 tonometry: an update on physiology, methodology and clinical applications. Br J Anaesth 84: 74–86

    Article  PubMed  CAS  Google Scholar 

  126. Creteur J, De Backer D, Vincent JL (1999) Does gastric tonometry monitor splanchnic perfusion? Crit Care Med 27: 2480–4

    Article  PubMed  CAS  Google Scholar 

  127. Vincent JL, Creteur J (1998) Gastric mucosal pH is definitely obsolete—please tell us more about gastric mucosal PCO2. Crit Care Med 26: 1479–81

    Article  PubMed  CAS  Google Scholar 

  128. Knichwitz G, Kuhmann M, Brodner G et al. (1996) Gastric tonometry: precision and reliability are improved by a phosphate buffered solution. Crit Care Med 24(3): 512–6

    Article  PubMed  CAS  Google Scholar 

  129. Joly LM, Monchi M, Cariou A et al. (1999) Effects of dobutamine on gastric mucosal perfusion and hepatic metabolism in patients with septic shock. Am J Respir Crit Care Med 160: 1983–6

    Article  PubMed  CAS  Google Scholar 

  130. Marik PE. Gastric intramucosal pH. A better predictor of multiorgan dysfunction syndrome and death than oxygen-derived variables in patients with sepsis. Chest 1993; 104(1):225–9

    Article  PubMed  CAS  Google Scholar 

  131. Shoemaker WC, Belzberg H, Wo CC et al. (1998) Multicenter study of noninvasive monitoring systems as alternatives to invasive monitoring of acutely ill emergency patients. Chest 114: 1643–52

    Article  PubMed  CAS  Google Scholar 

  132. Sageman WS, Amundson DE (1993) Thoracic electrical bioimpedance measurement of cardiac output in postaortocoronary bypass patients. Crit Care Med 21: 1139–42

    Article  PubMed  CAS  Google Scholar 

  133. Young JD, McQuillan P (1993) Comparison of thoracic electrical bioimpedance and thermodilution for the measurement of cardiac index in patients with severe sepsis. Br J Anaesth 70: 58–62

    Article  PubMed  CAS  Google Scholar 

  134. Appel PL, Kram HB, Mackabee J et al. (1986) Comparison of measurements of cardiac output by bioimpedance and thermodilution in severely ill surgical patients. Crit Care Med 14: 933–5

    Article  PubMed  CAS  Google Scholar 

  135. Preiser JC, Daper A, Parquier JN et al. (1989) Transthoracic electrical bioimpedance versus thermodilution technique for cardiac output measurement during mechanical ventilation. Intensive Care Med 15: 221–3

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag France

About this chapter

Cite this chapter

Bourgeois, E., Fieux, F., Jacob, L. (2011). Monitorage hémodynamique de l’état de choc septique. In: Sepsis grave et choc septique. Le point sur …. Springer, Paris. https://doi.org/10.1007/978-2-8178-0064-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0064-6_9

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0063-9

  • Online ISBN: 978-2-8178-0064-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics