Skip to main content

Traitement antibiotique

  • Chapter
Book cover Sepsis grave et choc septique

Part of the book series: Le point sur … ((POINT))

  • 703 Accesses

Résumé

La prescription d’une antibiothérapie adaptée est fondamentale dans la prise en charge précoce du choc septique. La prescription est toujours probabiliste et correspond à la mise en route d’un traitement avant l’établissement d’un diagnostic microbiologique. Comme souligné ailleurs, ce traitement peut être «issu de l’expérience et de l’observation plus que de la théorie», aussi bien que «basé sur du charlatanisme et indépendant de la pathologie ou des outils de diagnostic» [1]. Ainsi, une antibiothérapie probabiliste inadaptée peut-être définie comme l’absence d’antibiotique actif sur la bactérie responsable de l’infection, ou l’utilisation d’un antibiotique vis-à-vis duquel la bactérie responsable de l’infection est résistante. «Les antibiotiques à large spectre» seront employés dans le sens d’antibiotiques ayant une activité contre Pseudomonas aeruginosa, notamment l’imipénème, la pipéraciline + tazobactam, la ceftazidime, alors que «l’antibiothérapie à large spectre» sera employée dans le sens d’une association d’antibiotiques actifs sur P. aeruginosa ou le Staphylococcus aureus résistant à la méthycilline (SARM). Par exemple, l’association d’un aminoside à une β-lactamine est considérée comme une antibiothérapie à large spectre. Les antibiotiques à spectre réduit sont donc par exemple les β-lactamines sans activité sur P. aeruginosa (essentiellement la ceftriaxone, et l’amoxicilline + acide clavulanique).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Réfénces

  1. Wick JY (2007) Enigmatic, but understandable: empiric therapy. Consult Pharm 22: 691–4

    PubMed  Google Scholar 

  2. Iregui M, Ward S, Sherman G et al. (2002) Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest 122: 262–8

    Article  PubMed  Google Scholar 

  3. Luna CM, Vujacich P, Niederman MS et al. (1997) Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest 111: 676–85

    Article  PubMed  CAS  Google Scholar 

  4. Lodise TP, Patel N, Kwa A et al. (2007) Predictors of 30-day mortality among patients with Pseudomonas aeruginosa bloodstream infections: impact of delayed appropriate antibiotic selection. Antimicrob. Agents Chemother 51: 3510–5

    Article  CAS  Google Scholar 

  5. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia (2005) Am J Respir Crit Care Med 171: 388–416

    Google Scholar 

  6. Tam VH, Gamez EA, Weston JS et al. (2008) Outcomes of bacteremia due to Pseudomonas aeruginosa with reduced susceptibility to piperacillin-tazobactam: implications on the appropriateness of the resistance breakpoint. Clin Infect Dis 46: 862–7

    Article  PubMed  Google Scholar 

  7. Garcin F, Leone M, Antonini F et al. (2010) Non-adherence to guidelines: an avoidable cause of failure of empirical antimicrobial therapy in the presence of difficult-to-treat bacteria. Intensive Care Med 36: 75–82

    Article  PubMed  Google Scholar 

  8. Nachtigall I, Tamarkin A, Tafelski S et al. (2009) Impact of adherence to standard operating procedures for pneumonia on outcome of intensive care unit patients. Crit Care Med 37: 159–66

    Article  PubMed  Google Scholar 

  9. Cabana MD, Rand CS, Powe NR et al. (1999) Why don’t physicians follow clinical practice guidelines? A framework for improvement. JAMA 282: 1458–65

    Article  PubMed  CAS  Google Scholar 

  10. Fagon JY, Chastre J, Wolff M et al. (2000) Invasive and noninvasive strategies for management of suspected ventilator-associated pneumonia. A randomized trial. Ann Intern Med 132: 621–30

    Article  PubMed  CAS  Google Scholar 

  11. Osih RB, McGregor JC, Rich SE et al. (2007) Impact of empiric antibiotic therapy on outcomes in patients with Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother 51: 839–44

    Article  PubMed  CAS  Google Scholar 

  12. Thom KA, Schweizer ML, Osih RB et al. (2008) Impact of empiric antimicrobial therapy on outcomes in patients wiThescherichia coli and Klebsiella pneumoniae bacteremia: a cohort study. BMC Infect Dis 8: 116

    Article  PubMed  Google Scholar 

  13. Bouza E, Muñoz P (2008) Epidemiology of candidemia in intensive care units. Int J Antimicrob Agents 32 (suppl 2): S87–91

    Article  PubMed  CAS  Google Scholar 

  14. Schelenz S (2008) Management of candidiasis in the intensive care unit. J Antimicrob Chemother 61 (suppl 1): i31–4

    Article  PubMed  CAS  Google Scholar 

  15. Leone M, Martin C (2008) Starting and stopping antibiotic therapy. In: Controversies in Intensive Care Medicine. R Kuhlen, R Moreno, M Ranieri M, Berlin pp. 219–26

    Google Scholar 

  16. Levy MM, Dellinger RP, Townsend SR et al. (2010) The Surviving Sepsis Campaign: results of an international guideline-based performance improvement program targeting severe sepsis. Intensive Care Med 36: 222–31

    Article  PubMed  Google Scholar 

  17. Gaieski DF, Mikkelsen ME, Band RA et al. (2010) Impact of time to antibiotics on survival in patients with severe sepsis or septic shock in whom early goal-directed therapy was initiated in the emergency department. Crit Care Med 38: 1045–53

    Article  PubMed  Google Scholar 

  18. Ferrer R, Artigas A, Suarez D et al. (2009) Effectiveness of treatments for severe sepsis: a prospective, multicenter, observational study. Am J Respir Crit Care Med 180: 861–6

    Article  PubMed  CAS  Google Scholar 

  19. Kumar A, Ellis P, Arabi Y et al. (2009) Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest 136: 1237–48

    Article  PubMed  Google Scholar 

  20. Torres A, Ewig S, Lode H, Carlet J (2009) Defining, treating and preventing hospital acquired pneumonia: European perspective. Intensive Care Med 35: 9–29

    Article  PubMed  Google Scholar 

  21. Caruntu FA, Benea L (2006) Spontaneous bacterial peritonitis: pathogenesis, diagnosis, treatment. J Gastrointestin Liver Dis 15: 51–6

    PubMed  Google Scholar 

  22. Van de Beek D, de Gans J (2006) Dexamethasone in adults with community-acquired bacterial meningitis. Drugs 66: 415–27

    Article  PubMed  Google Scholar 

  23. Arabi Y, Memish ZA, Balkhy HH et al. (2005) Ventriculostomy-associated infections: incidence and risk factors. Am J Infect Control 33: 137–43

    Article  PubMed  Google Scholar 

  24. Bouza E, Pérez A, Muñoz P et al. (2003) Ventilator-associated pneumonia after heart surgery: a prospective analysis and the value of surveillance. Crit Care Med 31: 1964–70

    Article  PubMed  CAS  Google Scholar 

  25. Hayon J, Figliolini C, Combes A et al. (2002) Role of serial routine microbiologic culture results in the initial management of ventilator-associated pneumonia. Am J Respir Crit Care Med 165: 41–6

    Article  PubMed  Google Scholar 

  26. Blot S, Depuydt P, Vogelaers D et al. (2005) Colonization status and appropriate antibiotic therapy for nosocomial bacteremia caused by antibiotic-resistant gram-negative bacteria in an intensive care unit. Infect Control Hosp Epidemiol 26: 575–9

    Article  PubMed  Google Scholar 

  27. Depuydt PO, Blot SI, Benoit DD et al. (2006) Antimicrobial resistance in nosocomial bloodstream infection associated with pneumonia and the value of systematic surveillance cultures in an adult intensive care unit. Crit Care Med 34: 653–9

    Article  PubMed  Google Scholar 

  28. Beardsley JR, Williamson JC, Johnson JW et al. (2006) Using local microbiologic data to develop institution-specific guidelines for the treatment of hospital-acquired pneumonia. Chest 130: 787–93

    Article  PubMed  Google Scholar 

  29. Pea F, Viale P (2009) Bench-to-bedside review: Appropriate antibiotic therapy in severe sepsis and septic shock—does the dose matter? Crit Care 13: 214

    Article  PubMed  Google Scholar 

  30. Marik PE, Lipman J, Kobilski S, Scribante J (1991) A prospective randomized study comparing once-versus twice-daily amikacin dosing in critically ill adult and paediatric patients. J Antimicrob Chemother 28: 753–64

    Article  PubMed  CAS  Google Scholar 

  31. Roberts JA, Lipman J (2009) Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med 37: 840–51; quiz 859

    Article  PubMed  CAS  Google Scholar 

  32. Boselli E, Breilh D, Rimmelé T et al. (2004) Plasma and lung concentrations of ceftazidime administered in continuous infusion to critically ill patients with severe nosocomial pneumonia. Intensive Care Med 30: 989–91

    Article  PubMed  Google Scholar 

  33. Albanèse J, Léone M, Bruguerolle B et al. (2000) Cerebrospinal fluid penetration and pharmacokinetics of vancomycin administered by continuous infusion to mechanically ventilated patients in an intensive care unit. Antimicrob. Agents Chemother 44: 1356–8

    Article  PubMed  Google Scholar 

  34. Georges B, Conil J, Seguin T et al. (2009) Population pharmacokinetics of ceftazidime in intensive care unit patients: influence of glomerular filtration rate, mechanical ventilation, and reason for admission. Antimicrob. Agents Chemother 53: 4483–9

    Article  PubMed  CAS  Google Scholar 

  35. Roberts JA, Lipman J (2006) Antibacterial dosing in intensive care: pharmacokinetics, degree of disease and pharmacodynamics of sepsis. Clin Pharmacokinet 45: 755–73

    Article  PubMed  CAS  Google Scholar 

  36. Moellering RC, Mandell GL, Bennett JE, Dolin R (2000) Principles of anti-infective therapy. In: Mandell, Douglas and Bennett’s principles and pratice of infectious diseases. Churchill livingstone, NY Vol 2 197: 1980–2003

    Google Scholar 

  37. Kumar A, Zarychanski R, Light B et al. (2010) Early combination antibiotic therapy yields improved survival compared to monotherapy in septic shock: A propensity-matched analysis. Crit Care Med (accessible en ligne le 22 juillet 2010 dans http://www.ncbi.nlm.nih.gov. gate2.inist.fr/pubmed/20639750)

    Google Scholar 

  38. Micek ST, Welch EC, Khan J et al. (2010) Empiric combination antibiotic therapy is associated with improved outcome against sepsis due to Gram-negative bacteria: a retrospective analysis. Antimicrob Agents Chemother 54: 1742–8

    Article  PubMed  CAS  Google Scholar 

  39. Kumar A, Safdar N, Kethireddy S, Chateau D (2010) A survival benefit of combination antibiotic therapy for serious infections associated with sepsis and septic shock is contingent only on the risk of death: a meta-analytic/meta-regression study. Crit Care Med 38: 1651–64

    Article  PubMed  CAS  Google Scholar 

  40. Combes A, Luyt C, Fagon J et al. (2004) Impact of methicillin resistance on outcome of Staphylococcus aureus ventilator-associated pneumonia. Am J Respir Crit Care Med 170: 786–92

    Article  PubMed  Google Scholar 

  41. Niederman MS (2006) Use of broad-spectrum antimicrobials for the treatment of pneumonia in seriously ill patients: maximizing clinical outcomes and minimizing selection of resistant organisms. Clin Infect Dis 42 (suppl 2): S72–81

    Article  PubMed  CAS  Google Scholar 

  42. Depuydt P, Blot S (2007) Antibiotic therapy for ventilator-associated pneumonia: deescalation in the real world. Crit Care Med 35: 632–3

    Article  PubMed  Google Scholar 

  43. Soo Hoo GW, Wen YE, Nguyen TV, Goetz MB (2005) Impact of clinical guidelines in the management of severe hospital-acquired pneumonia. Chest 128: 2778–87

    Article  PubMed  Google Scholar 

  44. Rello J, Vidaur L, Sandiumenge A et al. (2004) De-escalation therapy in ventilator-associated pneumonia. Crit Care Med 32: 2183–90

    PubMed  Google Scholar 

  45. Singh N, Rogers P, Atwood CW et al. (2000) Short-course empiric antibiotic therapy for patients with pulmonary infiltrates in the intensive care unit. A proposed solution for indiscriminate antibiotic prescription. Am. J. Respir. Crit Care Med 162: 505–11

    Article  PubMed  CAS  Google Scholar 

  46. Kollef MH, Kollef KE (2005) Antibiotic utilization and outcomes for patients with clinically suspected ventilator-associated pneumonia and negative quantitative BAL culture results. Chest 128: 2706–13

    Article  PubMed  Google Scholar 

  47. Chastre J, Wolff M, Fagon J et al. (2003) Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA 290: 2588–98

    Article  PubMed  CAS  Google Scholar 

  48. Runyon BA, McHutchison JG, Antillon MR et al. (1991) Short-course versus long-course antibiotic treatment of spontaneous bacterial peritonitis. A randomized controlled study of 100 patients. Gastroenterology 100: 1737–42

    PubMed  CAS  Google Scholar 

  49. Hedrick TL, Evans HL, Smith RL et al. (2006) Can we define the ideal duration of antibiotic therapy? Surg Infect (Larchmt) 7: 419–32

    Article  Google Scholar 

  50. Christ-Crain M, Jaccard-Stolz D, Bingisser R et al. (2004) Effect of procalcitonin-guided treatment on antibiotic use and outcome in lower respiratory tract infections: clusterrandomised, single-blinded intervention trial. Lancet 363: 600–7

    Article  PubMed  CAS  Google Scholar 

  51. Schuetz P, Christ-Crain M, Thomann R et al. (2009) Effect of procalcitonin-based guidelines vs standard guidelines on antibiotic use in lower respiratory tract infections: the ProHOSP randomized controlled trial. JAMA 302: 1059–66

    Article  PubMed  CAS  Google Scholar 

  52. Bouadma L, Luyt C, Tubach F et al. (2010) Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet 375: 463–74

    Article  PubMed  CAS  Google Scholar 

  53. Kollef MH (2005) Bench-to-bedside review: antimicrobial utilization strategies aimed at preventing the emergence of bacterial resistance in the intensive care unit. Crit Care 9: 459–64

    Article  PubMed  Google Scholar 

  54. Ibrahim EH, Ward S, Sherman G et al. (2001) Experience with a clinical guideline for the treatment of ventilator-associated pneumonia. Crit Care Med 29: 1109–15

    Article  PubMed  CAS  Google Scholar 

  55. Dupont H, Mentec H, Sollet JP, Bleichner G (2001) Impact of appropriateness of initial antibiotic therapy on the outcome of ventilator-associated pneumonia. Intensive Care Med 27: 355–62

    Article  PubMed  CAS  Google Scholar 

  56. Micek ST, Ward S, Fraser VJ, Kollef MH (2004) A randomized controlled trial of an antibiotic discontinuation policy for clinically suspected ventilator-associated pneumonia. Chest 125: 1791–9

    Article  PubMed  Google Scholar 

  57. Shuman EK, Chenoweth CE (2010) Recognition and prevention of healthcare-associated urinary tract infections in the intensive care unit. Crit Care Med 38: S373–9

    Article  PubMed  Google Scholar 

  58. Marshall JC, Innes M (2003) Intensive care unit management of intra-abdominal infection. Crit Care Med 31: 2228–37

    Article  PubMed  Google Scholar 

  59. Park DR (2005) The microbiology of ventilator-associated pneumonia. Respir Care 50: 742–63; discussion 763-5

    PubMed  Google Scholar 

  60. Sarani B, Strong M, Pascual J, Schwab CW (2009) Necrotizing fasciitis: current concepts and review of the literature. J Am Coll Surg 208: 279–88

    Article  PubMed  Google Scholar 

  61. Vallés J, Ferrer R (2009) Bloodstream infection in the ICU. Infect Dis Clin North Am 23: 557–69

    Article  PubMed  Google Scholar 

  62. Beer R, Lackner P, Pfausler B, Schmutzhard E (2008) Nosocomial ventriculitis and meningitis in neurocritical care patients. J Neurol 255: 1617–24

    Article  PubMed  CAS  Google Scholar 

  63. Tunkel AR, Hartman BJ, Kaplan SL et al. (2004) Practice guidelines for the management of bacterial meningitis. Clin Infect Dis 39: 1267–84

    Article  PubMed  Google Scholar 

  64. Hooton TM, Bradley SF, Cardenas DD et al. (2010) Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin Infect Dis 50: 625–63

    Article  PubMed  Google Scholar 

  65. Tunkel AR, Glaser CA, Bloch KC et al. (2008) The management of encephalitis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 47: 303–27

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag France

About this chapter

Cite this chapter

Textoris, J., Martin, C., Leone, M. (2011). Traitement antibiotique. In: Sepsis grave et choc septique. Le point sur …. Springer, Paris. https://doi.org/10.1007/978-2-8178-0064-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0064-6_10

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0063-9

  • Online ISBN: 978-2-8178-0064-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics