Skip to main content

Réceptivité endométriale

  • Chapter
  • 901 Accesses

Résumé

«L’implantation de l’embryon est-elle la dernière frontière de la procréation médicalement assistée?». Venant de Robert Edwards, «Père» il y a 30 ans du premier bébé-éprouvette, la question interpelle (1). C’est un fait, le taux moyen d’implantation des embryons conçus par FIV/ICSI reste faible, 20% environ. Et cela ne facilite pas la mise en place de la seule mesure susceptible de réduire les grossesses multiples post-FIV : le transfert d’un seul embryon dans l’utérus, au lieu de deux en Europe, et trois ou quatre aux États-Unis. Dans ce cadre, une compréhension de la réceptivité utérine et plus largement du dialogue précoce de l’embryon avec l’endomètre est totalement essentielle. Il convient de souligner l’importance de l’hôte, la mère et son aptitude à recevoir l’embryon et à construire autour de lui la matrice nourricière nécessaire. L’objectif de la médecine de la reproduction n’est pas la grossesse mais la naissance d’enfants bien portants. L’analyse et le traitement des expressions anormales de l’environnement endométrial représentent ainsi une perspective d’avenir majeure en clinique courante.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Edwards RG (2006) Human implantation: the last barrier in assisted reproduction technologies? Reprod Biomed Online 13:887–904

    Article  PubMed  Google Scholar 

  2. Bergh PA, Navot D (1992) The impact of embryonic development and endometrial maturity on the timing of implantation. Fertil Steril 58:537–542

    PubMed  CAS  Google Scholar 

  3. Psychoyos A (1973) Hormonal control of ovoimplantation. Vitam Horm 31:201–256

    Article  PubMed  CAS  Google Scholar 

  4. Lessey BA (2000) Endometrial receptivity and the window of implantation. Baillieres Best Pract Res Clin Obstet Gynaecol 14:775–788

    Article  PubMed  CAS  Google Scholar 

  5. Sunder S, Lenton EA (2000) Endocrinology of the periimplantation period. Baillieres Best Pract Res Clin Obstet Gynaecol 14:789–800

    Article  PubMed  CAS  Google Scholar 

  6. Acosta AA, Elberger L, Borghi M et al. (2000) Endometrial dating and determination of the window of implantation in healthy fertile women. Fertil Steril 73:788–798

    Article  PubMed  CAS  Google Scholar 

  7. Evain-Brion D (1999) Maternal endocrine adaptations to placental hormones in humans. Acta Paediatr Suppl 88:12–16

    Article  PubMed  CAS  Google Scholar 

  8. McMaster MT, Newton RC, Dey SK, Andrews GK (1992) Activation and distribution of inflammatory cells in the mouse uterus during the preimplantation period. J Immunol 148:1699–1705

    PubMed  CAS  Google Scholar 

  9. Chaouat G, Menu E, Delage G et al. (1995) Immuno-endocrine interactions in early pregnancy. Hum Reprod 10 Suppl 2:55–59

    Google Scholar 

  10. Chard T (1995) Cytokines in implantation. Hum Reprod Update 1:385–396

    Article  PubMed  CAS  Google Scholar 

  11. Tabibzadeh S, Babaknia A (1995) The signals and molecular pathways involved in implantation, a symbiotic interaction between blastocyst and endometrium involving adhesion and tissue invasion. Hum Reprod 10:1579–1602

    PubMed  CAS  Google Scholar 

  12. Aplin JD (2000) The cell biological basis of human implantation. Baillieres Best Pract Res Clin Obstet Gynaecol 14:757–764

    Article  PubMed  CAS  Google Scholar 

  13. Fay TN, Grudzinskas JG (1991) Human endometrial peptides: a review of their potential role in implantation and placentation. Hum Reprod 6:1311–1326

    PubMed  CAS  Google Scholar 

  14. Getzenberg RH, Pienta KJ, Coffey DS (1990) The tissue matrix: cell dynamics and hormone action. Endocr Rev 11:399–417

    Article  PubMed  CAS  Google Scholar 

  15. Tabibzadeh S (1990) Evidence of T-cell activation and potential cytokine action in human endometrium. J Clin Endocrinol Metab 71:645–649

    Article  PubMed  CAS  Google Scholar 

  16. Wang C, Tanaka T, Nakamura Het al. (2003) Granulated metrial gland cells in the murine uterus: Localization, kinetics, and the functional role in angiogenesis during pregnancy. Microsc Res Tech 60:420–429

    Article  PubMed  CAS  Google Scholar 

  17. Ledee-Bataille N, Dubanchet S, Coulomb-L’hermine A, Durand-Gasselin I, Frydman R, Chaouat G (2004) A new role for natural killer cells, interleukin (IL)-12, and IL-18 in repeated implantation failure after in vitro fertilization. Fertil Steril 81:59–65

    Article  PubMed  CAS  Google Scholar 

  18. Ledee-Bataille N, Doumerc S, Olivennes F, Kadoch J, Chaouat G, Frydman R (2001) Contribution of diagnostic ultrasonography in cases of repeated embryonic implantation failure in fertilization in vitro. J Gynecol Obstet Biol Reprod (Paris) 30:747–752

    CAS  Google Scholar 

  19. Ledee N, Chaouat G, Serazin V et al. (2008) Endometrial vascularity by three-dimensional power Doppler ultrasound and cytokines: a complementary approach to assess uterine receptivity. J Reprod Immunol 77:57–62

    Article  PubMed  CAS  Google Scholar 

  20. Bourgain C, Ubaldi F, Tavaniotou A, Smitz J, Van Steirteghem AC, Devroey P (2002) Endometrial hormone receptors and proliferation index in the periovulatory phase of stimulated embryo transfer cycles in comparison with natural cycles and relation to clinical pregnancy outcome. Fertil Steril 78:237–244

    Article  PubMed  Google Scholar 

  21. Noyes RW, Hertig AT, Rock J (1975) Dating the endometrial biopsy. Am J Obstet Gynecol 122:262–263

    PubMed  CAS  Google Scholar 

  22. Barash A, Czernobilsky B, Insler V, Borenstein R, Rosenberg M, Fink A (1992) Endometrial morphology and hormonal profiles in in vitro fertilization patients. Eur J Obstet Gynecol Reprod Biol 44:117–121

    Article  PubMed  CAS  Google Scholar 

  23. Bentin-Ley U (2000) Relevance of endometrial pinopodes for human blastocyst implantation. Hum Reprod 15 Suppl 6:67–73

    Google Scholar 

  24. Nikas G, Drakakis P, Loutradis D et al. (1995) Uterine pinopodes as markers of the ‘nidation window’ in cycling women receiving exogenous oestradiol and progesterone. Hum Reprod 10:1208–1213

    PubMed  CAS  Google Scholar 

  25. Damario MA, Lesnick TG, Lessey BA et al. (2001) Endometrial markers of uterine receptivity utilizing the donor oocyte model. Hum Reprod 16:1893–1899

    Article  PubMed  CAS  Google Scholar 

  26. Stavreus-Evers A, Aghajanova L, Brismar H, Eriksson H, Landgren BM, Hovatta O (2002) Co-existence of heparin-binding epidermal growth factor-like growth factor and pinopodes in human endometrium at the time of implantation. Mol Hum Reprod 8:765–769

    Article  PubMed  CAS  Google Scholar 

  27. Meseguer M, Aplin JD, Caballero-Campo P et al. (2001) Human endometrial mucin MUC1 is up-regulated by progesterone and down-regulated in vitro by the human blastocyst. Biol Reprod 64:590–601

    Article  PubMed  CAS  Google Scholar 

  28. Lessey BA (1994) The use of integrins for the assessment of uterine receptivity. Fertil Steril 61:812–814

    PubMed  CAS  Google Scholar 

  29. Lessey BA, Yeh I, Castelbaum AJ et al. (1996) Endometrial progesterone receptors and markers of uterine receptivity in the window of implantation. Fertil Steril 65:477–483

    PubMed  CAS  Google Scholar 

  30. Meyer WR, Castelbaum AJ, Somkuti S et al. (1997) Hydrosalpinges adversely affect markers of endometrial receptivity. Hum Reprod 12:1393–1398

    Article  PubMed  CAS  Google Scholar 

  31. Simon C, Martin JC, Meseguer M, Caballero-Campo P, Valbuena D, Pellicer A (2000) Embryonic regulation of endometrial molecules in human implantation. J Reprod Fertil Suppl 55:43–53

    PubMed  CAS  Google Scholar 

  32. Fahey JV, Schaefer TM, Channon JY, Wira CR (2005) Secretion of cytokines and chemokines by polarized human epithelial cells from the female reproductive tract. Hum Reprod 20:1439–1446

    Article  PubMed  CAS  Google Scholar 

  33. Boomsma CM, Kavelaars A, Eijkemans MJ et al. (2009) Endometrial secretion analysis identifies a cytokine profile predictive of pregnancy in IVF. Hum Reprod 1:1–9

    Google Scholar 

  34. Ledee-Bataille N, Lapree-Delage G, Taupin JL, Dubanchet S, Frydman R, Chaouat G (2002) Concentration of leukaemia inhibitory factor (LIF) in uterine flushing fluid is highly predictive of embryo implantation. Hum Reprod 17:213–218

    Article  PubMed  CAS  Google Scholar 

  35. Ledee-Bataille N, Bonnet-Chea K, Hosny G, Dubanchet S, Frydman R, Chaouat G (2005). Role of the endometrial tripod interleukin-18,-15, and-12 in inadequate uterine receptivity in patients with a history of repeated in vitro fertilization-embryo transfer failure. Fertil Steril 83:598–605

    Article  PubMed  CAS  Google Scholar 

  36. Ledee N, Lombroso R, Lombardelli L et al. (2008) Cytokines and chemokines in follicular fluids and potential of the corresponding embryo: the role of granulocyte colony-stimulating factor. Hum Reprod 23:2001–2009

    Article  PubMed  CAS  Google Scholar 

  37. Kitaya K, Yamaguchi T, Honjo H (2005) Central role of interleukin-15 in postovulatory recruitment of peripheral blood CD16(-) natural killer cells into human endometrium. J Clin Endocrinol Metab 90:2932–2940

    Article  PubMed  CAS  Google Scholar 

  38. Croy BA, Esadeg S, Chantakru S et al. (2003) Update on pathways regulating the activation of uterine Natural Killer cells, their interactions with decidual spiral arteries and homing of their precursors to the uterus. J Reprod Immunol 59:175–191

    Article  PubMed  Google Scholar 

  39. Ledee N, Dubanchet S, Lombroso R, Ville Y, Chaouat G (2006) Downregulation of human endometrial IL-18 by exogenous ovarian steroids. Am J Reprod Immunol 56:119–123

    Article  PubMed  CAS  Google Scholar 

  40. Sengupta J, Ghosh D (2002) Blastocyst-endometrium interaction at implantation in the rhesus monkey. J Reprod Immunol 53:227–239

    Article  PubMed  CAS  Google Scholar 

  41. Clark SC, Kamen R (1987) The human hematopoietic colony-stimulating factors. Science 236:1229–1237

    Article  PubMed  CAS  Google Scholar 

  42. Mielcarek M, Roecklein BA, Torok-Storb B (1996) CD14+ cells in granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood mononuclear cells induce secretion of interleukin-6 and G-CSF by marrow stroma. Blood 87:574–580

    PubMed  CAS  Google Scholar 

  43. Salmassi A, Schmutzler AG, Huang L, Hedderich J, Jonat W, Mettler L (2004) Detection of granulocyte colony-stimulating factor and its receptor in human follicular luteinized granulosa cells. Fertil Steril 81 Suppl 1:786–791

    Article  Google Scholar 

  44. Giacomini G, Tabibzadeh SS, Satyaswaroop PG et al. (1995) Epithelial cells are the major source of biologically active granulocyte macrophage colony-stimulating factor in human endometrium. Hum Reprod 10:3259–3263

    PubMed  CAS  Google Scholar 

  45. Miyama M, Umesaki N, Kawabata M (1998) Identification of the granulocyte colony-stimulating factor (G-CSF) producing cell population in human decidua and its biological action on trophoblast cell. Osaka City Med J 44:85–96

    PubMed  CAS  Google Scholar 

  46. Calhoun DA, Donnelly WH Jr, Du Y, Dame JB, Li Y, Christensen RD (1999) Distribution of granulocyte colony-stimulating factor (G-CSF) and G-CSF-receptor mRNA and protein in the human fetus. Pediatr Res 46:333–338

    Article  PubMed  CAS  Google Scholar 

  47. Yanagi K, Makinoda S, Fujii R et al. (2002) Cyclic changes of granulocyte colony-stimulating factor (G-CSF) mRNA in the human follicle during the normal menstrual cycle and immunolocalization of G-CSF protein. Hum Reprod 17:3046–3052

    Article  PubMed  CAS  Google Scholar 

  48. Salmassi A, Schmutzler AG, Schaefer S et al. (2005) Is granulocyte colony-stimulating factor level predictive for human IVF outcome? Hum Reprod 20:2434–2440

    Article  PubMed  CAS  Google Scholar 

  49. Duan JS (1990) Production of granulocyte colony stimulating factor in decidual tissue and its significance in pregnancy. Osaka City Med J 36:81–97

    Google Scholar 

  50. Pan L, Delmonte J Jr, Jalonen CK, Ferrara JL (1995) Pre-treatment of donor mice with granulocyte colony-stimulating factor polarizes donor T lymphocytes toward type-2 cytokine production and reduces severity of experimental graft-versus-host disease. Blood 86:4422–4429

    PubMed  CAS  Google Scholar 

  51. Morris ES, MacDonald KP, Rowe V et al. (2004) Donor treatment with pegylated G-CSF augments the generation of IL-10-producing regulatory T cells and promotes transplantation tolerance. Blood 103:3573–3581

    Article  PubMed  CAS  Google Scholar 

  52. Barnea ER (2001) Embryo maternal dialogue: From pregnancy recognition to proliferation control. Early Pregnancy 5:65–66

    PubMed  CAS  Google Scholar 

  53. Dalton T, Kover K, Dey SK, Andrews GK (1994) Analysis of the expression of growth factor, interleukin-1, and lactoferrin genes and the distribution of inflammatory leukocytes in the preimplantation mouse oviduct. Biol Reprod 51:597–606

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Lédée, N. (2011). Réceptivité endométriale. In: Physiologie, pathologie et thérapie de la reproduction chez l’humain. Springer, Paris. https://doi.org/10.1007/978-2-8178-0061-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0061-5_15

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0060-8

  • Online ISBN: 978-2-8178-0061-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics