Skip to main content

Résumé

Folliculogenesis in humans is a long-lasting process and its study is of great interest in the field of human reproduction. The exact factors and physiological mechanisms underlying initiation of follicular growth, selection and growth of follicles, and final follicular maturation is not fully understood. Elucidating the cascade of events involved in those developmental processes will help in preventing, diagnosing, treating female reproductive disorders, preserving and restoring female fertility, and achieving pregnancy. Th ere is considerable ongoing research on the regulation of early-stage folliculo-genesis, and recent findings suggest that female laboratory mice produce new oocytes throughout their reproductive lifespan (1). Although this observation challenges the current belief that new follicles are not generated in mammalian ovaries after birth, there is no direct evidence that new oocytes are ever produced in the human adult ovaries. At birth, the human ovary contains the complete number of oocytes that the female will ever have during her reproductive lifespan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Johnson J, Bagley J, Skaznik-Wikiel M, et al. (2005) Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 29:303–315

    Article  CAS  Google Scholar 

  2. Baker TG (1963) A quantitative and cytological study of germ cells in human ovaries. Proc R Soc Lond B Biol Sci 158:417–433

    Article  PubMed  CAS  Google Scholar 

  3. Franchi LL, Baker TG (1973) In: Hafez ESS, Evens TN (eds) Human reproduction, conception and contraception, Harper & Row, Hagerstown, Maryland, pp 53–83

    Google Scholar 

  4. Bachvarova R (1985) Gene expression during oogenesis and oocyte development in mammals. In: Browder L (ed) Developmental biology: a comprehensive synthesis. Plenum, New York, pp 453–524

    Google Scholar 

  5. Gougeon A, Chainy GB (1987) Morphometric studies of small follicles in ovaries of women at different ages. J Reprod Fertil 81:433–442

    Article  PubMed  CAS  Google Scholar 

  6. Gougeon A (1986) Dynamics of follicular growth in the human: A model from preliminary results. Hum Reprod 1:81–87

    PubMed  CAS  Google Scholar 

  7. Gougeon A (1996) Regulation of ovarian follicular development in primates: Facts and hypotheses. Endocr Rev 17:121–155

    PubMed  CAS  Google Scholar 

  8. Hirshfield AN (1989) Granulosa cell proliferation in very small follicles of cycling rats studied by long-term continuous tritiated-thymidine infusion. Biol Reprod 41:309–316

    Article  PubMed  CAS  Google Scholar 

  9. Reynolds SRM (1950) The vasculature of the ovary and ovarian function. Recent Progr Horm Res 5:65

    Google Scholar 

  10. Faddy MJ, Gosden RG (1995) A mathematical model of follicle dynamics in the human ovary. Hum Reprod 10:770–775

    PubMed  CAS  Google Scholar 

  11. Richardson SJ, Senikas V, Nelson JF (1987) Follicular depletion during the menopausal transition: Evidence for accelerated loss and ultimate exhaustion. J Clin Endocrinol Metab 65:1231–1237

    Article  PubMed  CAS  Google Scholar 

  12. Edwards RG, Fowler RE, Gore-Langton RE, et al. (1977) Normal and abnormal follicular growth in mouse, rat and human ovaries. J Reprod Fertil 51:237–263

    Article  PubMed  CAS  Google Scholar 

  13. Baker TG, Scrimgeour JB (1980) Development of the gonad in normal and anencephalic human fetuses. J Reprod Fertil 60:193–199

    Article  PubMed  CAS  Google Scholar 

  14. Gulyas BJ, Hodgen GD, Tullner WW, Ross GT (1977) Effects of fetal or maternal hypophysectomy on endocrine organs and body weight in infant rhesus monkeys (Macaca mulatta) with particular emphasis on oogenesis. Biol Reprod 16:216–227

    Article  PubMed  CAS  Google Scholar 

  15. Kumar TR, Wang Y, Lu N, Matzuk MM (1997) Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet 15:201–204

    Article  PubMed  CAS  Google Scholar 

  16. Diedrich K, Felberbaum R (1998) New approaches to ovarian stimulation. Hum Reprod 3:1–13

    Google Scholar 

  17. Wang XN, Greenwald GS (1993) Hypophysectomy of the cyclic mouse. I. Effects on folliculogenesis, oocyte growth, and follicle stimulating hormone and human chorionic gonadotropin receptors. Biol Reprod 48:585–594

    Article  PubMed  CAS  Google Scholar 

  18. Flaws JA, Abbud R, Mann RJ, et al. (1997) Chronically elevated luteinizing hormone depletes primordial follicles in the mouse ovary. Biol Reprod 57:1233–1237

    Article  PubMed  CAS  Google Scholar 

  19. Ataya K, Rao LV, Lawrence E, Kimmel R (1995) Luteinizing hormone-releasing hormone agonist inhibits cyclo-phosphamide-induced ovarian follicular depletion in rhesus monkeys. Biol Reprod 52:365–372

    Article  PubMed  CAS  Google Scholar 

  20. Blumenfeld Z, Shapiro D, Shteinberg M, et al. (2000) Preservation of fertility and ovarian function and minimizing gonadotoxicity in young women with systemic lupus erythematosus treated by chemotherapy. Lupus 9:401–405

    Article  PubMed  CAS  Google Scholar 

  21. Oktay K, Briggs D, Gosden RG (1997) Ontogeny of follicle-stimulating hormone receptor gene expression in isolated human ovarian follicles. J Clin Endocrinol Metab 82:3748–3751

    Article  PubMed  CAS  Google Scholar 

  22. O’Shaughnessy PJ, McLelland D, McBride MW (1997) Regulation of luteinizing hormone-receptor and follicle-stimulating hormone receptor messenger ribonucleic acid levels during development the neonatal mouse ovary. Biol Reprod 57:602–608

    Article  PubMed  Google Scholar 

  23. Tsafriri A (1997) Follicular development: impact on oocyte quality. In: Fauser BCJM (ed) FSH action and intraovarian regulation. Parthenon Press, New York, pp 83–105

    Google Scholar 

  24. Bukovský A, Caudle MR, Keenan JA, et al. (1995) Quantitative evaluation of the cell cycle-related retinoblastoma protein and localization of Thy-1 differentiation protein and macrophages during follicular development and atresia, and in human corpora lutea. Biol Reprod 52:776–792

    Article  PubMed  Google Scholar 

  25. Li S, Maruo T, Ladines-Llave CA, et al. (1994) Stage-limited expression of myc oncoprotein in the human ovary during follicular growth, regression and atresia. Endocr J 41:83–92

    Article  PubMed  CAS  Google Scholar 

  26. Picton H, Briggs D, Gosden R (1998) The molecular basis of oocyte growth and development. Mol Cell Endocrinol 145:27–37

    Article  PubMed  CAS  Google Scholar 

  27. Durlinger AL, Kramer P, Karels B, et al. (1999) Control of primordial follicle recruitment by anti-Mullerian hormone in the mouse ovary. Endocrinology 140:5789–5796

    Article  PubMed  CAS  Google Scholar 

  28. Durlinger AL, Gruijters MJ, Kramer P, et al. (2001) Anti-Mullerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology 142:4891–4899

    Article  PubMed  CAS  Google Scholar 

  29. Salmon NA, Handyside AH, Joyce IM (2004) Oocyte regulation of anti-Müllerian hormone expression in granulosa cells during ovarian follicle development in mice. Dev Biol 266:201–208

    Article  PubMed  CAS  Google Scholar 

  30. Rajkovic A, Pangas SA, Ballow D, et al. (2004) NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science 305:1157–1159

    Article  PubMed  CAS  Google Scholar 

  31. Uda M, Ottolenghi C, Crisponi L, et al. (2004) Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum Mol Genet 13:1171–1181

    Article  PubMed  CAS  Google Scholar 

  32. Nilsson E, Parrott JA, Skinner MK (2001) Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Mol Cell Endocrinol 175:123–130

    Article  PubMed  CAS  Google Scholar 

  33. Kezele P, Nilsson EE, Skinner MK (2005) Keratinocyte growth factor acts as a mesenchymal factor that promotes ovarian primordial to primary follicle transition. Biol Reprod 73:967–973

    Article  PubMed  CAS  Google Scholar 

  34. Nilsson EE, Kezele P, Skinner MK (2002) Leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries. Mol Cell Endocrinol 188:65–73

    Article  PubMed  CAS  Google Scholar 

  35. Van Wezel IL, Umapathysivam K, Tilley WD, Rodgers RJ (1995) Immunohistochemical localization of basic fibroblast growth factor in bovine ovarian follicles. Mol Cell Endocrinol 115:133–140

    Article  PubMed  Google Scholar 

  36. Koji T, Chedid M, Rubin JS, et al. (1994) Progesterone-dependent expression of keratinocyte growth factor mRNA in stromal cells of the primate endometrium: Keratinocyte growth factor as a progestomedin. J Cell Biol 125:393–401

    Article  PubMed  CAS  Google Scholar 

  37. Nilsson E, Parrott JA, Skinner MK (2001) Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Mol Cell Endocrinol 175:123–130

    Article  PubMed  CAS  Google Scholar 

  38. Chabbert-Buffet N, Bouchard P (2001) The neuroendocrine regulation of the human ovarian cycle. Chronobiol Int 18:893–919

    Google Scholar 

  39. Choi Y, Rajkovic A (2006) Genetics of early mammalian folliculogenesis. Cell Mol Life Sci 63:579–590

    Article  PubMed  CAS  Google Scholar 

  40. Fortune JE, Cushman RA, Wahl CM, Kito S (2000) The primordial to primary follicle transition. Mol Cell Endocrinol 163:53–60

    Article  PubMed  CAS  Google Scholar 

  41. Cattanach BM, Iddon CA, Charlton HM, et al. (1977) Gonadotrophin-releasing hormone deficiency in a mutant mouse with hypogonadism. Nature 269:338–334

    Article  PubMed  CAS  Google Scholar 

  42. Abel MH, Wootton AN, Wilkins V, et al. (2000) The effect of a null mutation in the follicle-stimulating hormone receptor gene on mouse reproduction. Endocrinology 141:1795–1803

    Article  PubMed  CAS  Google Scholar 

  43. Kuroda H, Terada N, Nakayama H, et al. (1988) Infertility due to growth arrest of ovarian follicles in Sl/Slt mice. Dev Biol 126:71–79

    Article  PubMed  CAS  Google Scholar 

  44. Huang EJ, Manova K, Packer AI, Sanchez S, Bachvarova RF, Besmer P (1993) The murine steel panda mutation affects kit ligand expression and growth of early ovarian follicles. Dev Biol 157:100–109.

    Article  PubMed  CAS  Google Scholar 

  45. Chabot B, Stephenson DA, Chapman VM et al. (1988) The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature 335:88–89

    Article  PubMed  CAS  Google Scholar 

  46. Yoshida H, Takakura N, Kataoka H, et al. (1997) Stepwise requirement of c-kit tyrosine kinase in mouse ovarian follicle development Dev Biol 184:122–137

    Article  PubMed  CAS  Google Scholar 

  47. Ezoe K, Holmes SA, Ho L, Bennett CP, et al. (1995) Novel mutations and deletions of the KIT (steel factor receptor) gene in human piebaldism. Am J Hum Genet 56:58–66

    PubMed  CAS  Google Scholar 

  48. Wassarman PM, Liu C, Litscher ES (1996) Constructing the mammalian egg zona pellucida: Some new pieces of an old puzzle. J Cell Sci 109:2001–2004

    PubMed  CAS  Google Scholar 

  49. Elvin JA, Yan C, Matzuk MM (2000) Oocyte-expressed TGF-β superfamily members in female fertility. Mol Cell Endocrinol 159:1–5

    Article  PubMed  CAS  Google Scholar 

  50. Erickson GF, Shimasaki S (2001) The physiology of folliculogenesis: The role of novel growth factors. Fertil Steril 76:943–949

    Article  PubMed  CAS  Google Scholar 

  51. Aaltonen J, Laitinen MP, Vuojolainen K, et al. (1999) Human growth differentiation factor 9 (GDF-9) and its novel homolog GDF-9B are expressed in oocytes during early folliculogenesis. J Clin Endocrinol Met 84:2744–2750

    Article  CAS  Google Scholar 

  52. Laitinen M, Vuojolainen K, Jaatinen R, et al. (1998) A novel growth differentiation factor-9 (GDF-9) related factor is co-expressed with GDF-9 in mouse oocytes during folliculogenesis. Mech Dev 78:135–140

    Article  PubMed  CAS  Google Scholar 

  53. Moore RK, Otsuka F, Shimasaki S (2003) Molecular basis of bone morphogenetic protein-15 signaling in granulosa cells. J Biol Chem 278:304–310

    Article  PubMed  CAS  Google Scholar 

  54. Mazerbourg S, Klein C, Roh J, et al. (2004) Growth differentiation factor-9 signaling is mediated by the type I receptor, activin receptor-like kinase 5. Mol Endocrinol 18:653–665

    Article  PubMed  CAS  Google Scholar 

  55. Dong J, Albertini DF, Nishimori K, et al. (1996) Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383:531–535

    Article  PubMed  CAS  Google Scholar 

  56. Galloway SM, McNatty KP, Cambridge LM, et al. (2000) Mutations in an oocyte-derived growth factor gene (BMP476 15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat Genet 25:279–283

    Article  PubMed  CAS  Google Scholar 

  57. Juneja SC, Barr KJ, Enders GC, Kidder GM, et al. (1999) Defects in the germ line and gonads of mice lacking connexin43. Biol Reprod 60:1263–1270

    Article  PubMed  CAS  Google Scholar 

  58. Kidder GM, Mhawi AA (2002) Gap junctions and ovarian folliculogenesis. Reproduction 123:613–620

    Article  PubMed  CAS  Google Scholar 

  59. Bruzzone R, White TW, Paul DL (1996) Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem 238:1–27

    Article  PubMed  CAS  Google Scholar 

  60. Erickson GF, Magoffin DA, Dyer CA, Hofeditz C (1985) The ovarian androgen producing cells: A review of structure/function relationships. Endocr Rev 6:371–399

    Article  PubMed  CAS  Google Scholar 

  61. Bassett D (1943) The changes in the vascular pattern of the ovary of the albino rat during the estrous cycle. Am J Anat 73:252–292

    Article  Google Scholar 

  62. Channing C, Kammerman S (1973) Characteristics of gonadotropin receptors of porcine granulosa cells during follicle maturation. Endocrinology 92:531–540

    Article  PubMed  CAS  Google Scholar 

  63. Fauser B, Van Heusden A (1997) Manipulation of human ovarian function: physiological concepts and clinical consequences. Endocr Rev 18:71–106

    Article  PubMed  CAS  Google Scholar 

  64. Hartshorne GM (1997) In vitro culture of ovarian follicles. Rev Reprod 2:94–104

    Article  PubMed  CAS  Google Scholar 

  65. Cortvrindt R, Hu Y, Smitz J (1998) Recombinant luteinizing hormone as a survival and differentiating factor increases oocyte maturation in recombinant follicle stimulated hormone-supplemented mouse preantral follicle culture. Hum Reprod 13:1292–1303

    Article  PubMed  CAS  Google Scholar 

  66. Zhao J, Taverne MA, van der Weijden GC, et al. (2001) Effect of activin A on in vitro development of rat preantral follicles and localization of activin A and activin receptor II. Biol Reprod 65:967–977

    Article  PubMed  CAS  Google Scholar 

  67. Driancourt MA, Reynaud K, Cortvrindt R, Smitz J (2000) Roles of kit and kit ligand in ovarian function. Rev Reprod 5:143–152

    Article  PubMed  CAS  Google Scholar 

  68. Gutierrez CG, Ralph JH, Telfer EE, et al. (2000) Growth and antrum formation of bovine preantral follicles in long-term culture in vitro. Biol Reprod 62:1322–1328

    Article  PubMed  CAS  Google Scholar 

  69. Revelli A, Delle Piane L, Casano S, et al. (2009) Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod Biol Endocrinol 7:40

    Article  PubMed  CAS  Google Scholar 

  70. Neal MS, Zhu J, Foster WG (2008) Quantification of benzo[a]pyrene and other PAHs in the serum and follicular fluid of smokers versus non-smokers. Reprod Toxicol 25:100–106

    Article  PubMed  CAS  Google Scholar 

  71. Brown J (1978) Pituitary control of ovarian function — concepts derived from gonadotropin therapy. Aust N Z J Obstet Gynaecol 18:47–54

    Article  CAS  Google Scholar 

  72. Zeleznik AJ, Hutchison JS, Schuler HM (1985) Interference with the gonadotropin-suppressing actions of estradiol in macaques overrides the selection of a single preovulatory follicle. Endocrinology 117:991–999

    Article  PubMed  CAS  Google Scholar 

  73. Hillier S (1994) Current concepts of the roles of follicle stimulating hormone and luteinizing hormone in folliculogenesis. Hum Reprod 9:188–191

    PubMed  CAS  Google Scholar 

  74. Gougeon A, Lefèvre B (1983) Evolution of the diameters of the largest healthy and atretic follicles during the human menstrual cycle. J Reprod Fertil 69:497–502

    Article  PubMed  CAS  Google Scholar 

  75. Zeleznik AJ (2004) The physiology of follicle selection. Reprod Biol Endocrinol 2:31

    Article  PubMed  Google Scholar 

  76. Boostanfar R, Jain JK, Mishell DR, Jr, Paulson RJ (2001) A prospective randomized trial comparing clomiphene citrate with tamoxifen citrate for ovulation. Fertil Steril 75:1024–1026

    Article  PubMed  CAS  Google Scholar 

  77. Richards S (1994) Hormonal control of gene expression in the ovary. Endocr Rev 15:725–751

    PubMed  CAS  Google Scholar 

  78. Zeleznik J, Hillier SG (1984) The role of gonadotropins in the selection of the preovulatory follicle. Clin Obstet Gynecol 27:927–940

    Article  PubMed  CAS  Google Scholar 

  79. Hodgen G (1989) Neuroendocrinology of the normal menstrual cycle. J Reprod Med 34:68–75

    PubMed  CAS  Google Scholar 

  80. Zeleinski-Wooten M, Hutchison J, Chandrasekher Y, et al. (1992) Administration of human luteinizing hormone (hLH) to macaques after follicular development: Further titration of LH surge requirements for ovulatory changes in primate follicles. J Clin Endocrinol Met 75:502–507

    Article  Google Scholar 

  81. Richards JS, Russell DL, Robker RL, et al. (1998) Molecular mechanisms of ovulation and luteinization. Mol Cell Endocrinol 145:47–54

    Article  PubMed  CAS  Google Scholar 

  82. Fan HY, Liu Z, Shimada M, et al. (2009) MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility. Science 324:938–941

    Article  PubMed  CAS  Google Scholar 

  83. Mohri H (1996) Fibronectin and integrins interactions. J Investig Med. 44:429–441

    PubMed  CAS  Google Scholar 

  84. Senger DR, Claffey KP, Benes JE, et al. (1997) Angiogenesis promoted by vascular endothelial growth factor: regulation through alpha1beta1 and alpha2beta1 integrins. Proc Natl Acad Sci USA 94:13612–13617

    Article  PubMed  CAS  Google Scholar 

  85. Schramm W, Bovaird L, Glew ME, et al. (1983) Corpus luteum regression induced by ultra-low pulses of prostaglandin F2 alpha. Prostaglandins 3:347–364

    Article  Google Scholar 

  86. Vaskivuo TE, Ottander U, Oduwole O, et al. (2002) Role of apoptosis, apoptosis-related factors and 17beta-hydroxysteroid dehydrogenases in human corpus luteum regression. Mol Cell Endocrinol 194:191–200

    Article  PubMed  CAS  Google Scholar 

  87. Hsueh J, Billig H, Tsafriri A (1994) Ovarian follicle atresia: A hormonally controlled apoptotic process. Endocr Rev 15:707–724

    PubMed  CAS  Google Scholar 

  88. Gougeon A (1984) Caractères qualitatifs et quantitatifs de la population folliculaire dans l’ovaire humain adulte. Contr Fertil Secual 12:527–535

    Google Scholar 

  89. Lee J, Park HJ, Choi HS, et al. (1999) Gonadotropin stimulation of pituitary adenylate cyclase activating polypeptide (PACAP) messenger ribonucleic acid in the rat ovary and the role of PACAP as a follicle survival factor. Endocrinology 140:818–826

    Article  PubMed  CAS  Google Scholar 

  90. Tilly JL, Pru JK, Rueda BR (2004) Apoptosis in ovarian development, function, and failure. In: Leung PCK, Adashi EY, Eds. The ovary, 2nd edn, pp 321–352

    Google Scholar 

  91. Wassarman PM, Josefowicz WJ (1978) Oocyte development in the mouse: an ultrastructural omparison of oocytes isolated at various stages of growth and meiotic competence. J Morphol 156:209–235

    Article  PubMed  CAS  Google Scholar 

  92. Fair T, Hyttel P, Greve T (1995) Bovine oocyte diameter in relation to maturational competence and transcriptional activity. Mol Reprod Dev 42:437–442

    Article  PubMed  CAS  Google Scholar 

  93. Durinzi KL, Saniga EM, Lanzendorf SE (1995) The relationship between size and maturation in-vitro in the unstimulated human oocyte. Fertil Steril 63:404–406

    PubMed  CAS  Google Scholar 

  94. Schultz GA, Gifford DJ, Mahadevan MM et al. (1988) Protein synthetic patterns in immature and mature human oocytes. In: Jones, Jr, HW, Schrader C (eds) In-vitro fertilization and other assisted reproduction. Ann NY Acad Sci 541:237–247

    Google Scholar 

  95. Bachvarova RF (1985) Gene expression during oogenesis and oocyte development in mammals. Dev Biol 1:453–524

    CAS  Google Scholar 

  96. Parfenov V, Potchukalina G, Dudina L, et al. (1989) Human antral follicles: oocyte nucleolus and the karyosphere formation (electron microscopic and autoradiographic data). Gamete Res 22:219–231

    Article  PubMed  CAS  Google Scholar 

  97. Albertini DF (1992) Cytoplasmic microtubular dynamics and chromatin organization during mammalian oogenesis and oocyte maturation. Mutat Res 296:57–68 (Review)

    PubMed  CAS  Google Scholar 

  98. Hunter AG, Moor RM (1987) Stage-dependent effects of inhibiting ribonucleic acids and protein synthesis on meiotic maturation of bovine oocytes in-vitro. J Dairy Sci 70:1646–1651

    Article  PubMed  CAS  Google Scholar 

  99. Kastrop PM, Bevers MM, Destree OH, Kruip TA (1991) Protein synthesis and phosphorylation patterns of bovine oocytes maturing in-vivo. Mol Reprod Dev 29:271–275

    Article  PubMed  CAS  Google Scholar 

  100. Sirard MA, Florman HM, Leibfried-Rutledge ML, et al. (1989) Timing of nuclear progression and protein synthesis necessary for meiotic maturation of bovine oocytes. Biol Reprod 40:1257–1263

    Article  PubMed  CAS  Google Scholar 

  101. Wickramasinghe D, Albertini DF (1993) Cell cycle control during mammalian oogenesis. Curr Top Dev Biol 28:125–153

    Article  PubMed  CAS  Google Scholar 

  102. Hyttel P, Fair T, Callesen H, Greve T (1997) Oocyte growth, capacitation and final maturation in cattle. Theriogenology 47:23–32

    Article  Google Scholar 

  103. de Matos DG, Furnus CC, Moses DF, et al. (1996) Stimulation of glutathione synthesis of in vitro matured bovine oocytes and its effect on embryo development and freezability. Mol Reprod Dev 45:451–457

    Article  PubMed  Google Scholar 

  104. Sutovsky P, Schatten G (1997) Depletion of glutathione during bovine oocyte maturation reversibly blocks the decondensation of the male pronucleus and pronuclear apposition during fertilization. Biol Reprod 56:1503–1512

    Article  PubMed  CAS  Google Scholar 

  105. Mattson BA, Albertini DF (1990) Oogenesis: Chromatin and microtubule dynamics during meiotic prophase. Mol Reprod Dev 25:374–383

    Article  PubMed  CAS  Google Scholar 

  106. Bellone M, Zuccotti M, Redi C, Garagna S (2009) The position of the germinal vesicle and the chromatin organization together provide a marker of the developmental competence of mouse antral oocytes. Reproduction 138:639–643

    Article  PubMed  CAS  Google Scholar 

  107. De La Fuente R (2006) Chromatin modifications in the germinal vesicle (GV) of mammalian oocytes. Dev Biol 292:1–12

    Article  CAS  Google Scholar 

  108. Miyara F, Migne C, Dumont-Hassan M, et al. (2003) Chromatin configuration and transcriptional control in human and mouse oocytes. Mol Reprod Dev 64:458–470

    Article  PubMed  CAS  Google Scholar 

  109. Albertini DF, Carabatsos MJ (1998) Comparative aspects of meiotic cell cycle control in mammals. J Mol Med 76:795–799

    Article  PubMed  CAS  Google Scholar 

  110. Tsafriri A, Pomerantz, SH. Oocyte maturation inhibitor (1986). Clin Endocrinol Metab 15:157–170

    Google Scholar 

  111. van de Wiel DF, Bar-Ami S, Tsafriri A, de Jong FH (1983) Oocyte maturation inhibitor, inhibin and steroid concentrations in porcine follicular fluid at various stages of the oestrous cycle. J Reprod Fertil 68:247–252

    Article  PubMed  Google Scholar 

  112. Conti M, Andersen CB, Richard F, et al. (2002) Role of cyclic nucleotide signaling in oocyte maturation. Mol Cell Endocrinol 22:153–159 (Review)

    Article  Google Scholar 

  113. Nogueira D, Albano C, Adriaenssens T, et al. (2003) Human oocytes reversibly arrested in prophase I by phosphodiesterase type 3 inhibitor in-vitro. Biol Reprod 69:1042–1052

    Article  PubMed  CAS  Google Scholar 

  114. Nogueira D, Ron-El R, Friedler S, et al. (2006) Meiotic arrest in vitro by phosphodiesterase 3-inhibitor enhances maturation capacity of human oocytes and allows subsequent embryonic development. Biol Reprod 74:177–184

    Article  PubMed  CAS  Google Scholar 

  115. Vanhoutte L, Nogueira D, Dumortier F, De Sutter P (2009) Assessment of a new in vitro maturation system for mouse and human cumulus-enclosed oocytes: Three-dimensional prematuration culture in the presence of a phosphodiesterase 3-inhibitor. Hum Reprod 24:1946–1959

    Article  PubMed  CAS  Google Scholar 

  116. Sunahara RK, Dessauer CW, Gilman AG (1996) Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol 36:461–480

    Article  PubMed  CAS  Google Scholar 

  117. Eichenlaub-Ritter U, Peschke M (2002) Expression in in-vivo and in-vitro growing and maturing oocytes: Focus on regulation of expression at the translational level. Hum Reprod Update 8:21–41

    Article  PubMed  CAS  Google Scholar 

  118. Brower PT, Schultz RM. (1982) Intercellular communication between granulosa cells and mouse oocytes: Existence and possible nutritional role during oocyte growth. Dev Biol 90:144–153

    Article  PubMed  CAS  Google Scholar 

  119. Eppig JJ (2001) Oocyte control of ovarian follicular development and function in mammals. Reproduction 122:829–838 (Review)

    Article  PubMed  CAS  Google Scholar 

  120. Gilchrist RB, Lane M, Thompson JG (2008) Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update 14:159–177

    Article  PubMed  CAS  Google Scholar 

  121. Hussein TS, Froiland DA, Amato F, et al. (2005) Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J Cell Sci 118:5257–5268

    Article  PubMed  CAS  Google Scholar 

  122. Eppig J, Wigglesworth K, Pendola FL (2002) The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc Natl Acad Sci USA 99:2890–2894

    Article  PubMed  CAS  Google Scholar 

  123. Galloway SM, McNatty KP, Cambridge LM, et al. (2000) Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat Genet 25:279–283

    Article  PubMed  CAS  Google Scholar 

  124. Latham KE, Wigglesworth K, McMenamin M, Eppig JJ (2004) Stage-dependent effects of oocytes and growth differentiation factor 9 on mouse granulosa cell development: Advance programming and subsequent control of the transition from preantral secondary follicles to early antral tertiary follicles. Biol Reprod 70:1253–1262

    Article  PubMed  CAS  Google Scholar 

  125. Orisaka M, Tajima K, Mizutani T, et al. (2006) Granulosa cells promote differentiation of cortical stromal cells into theca cells in the bovine ovary. Biol Reprod; 75:734–740

    Article  PubMed  CAS  Google Scholar 

  126. Otsuka F, Moore RK, Wang X, et al. (2005) Essential role of the oocyte in estrogen amplification of follicle-stimulating hormone signaling in granulosa cells. Endocrinology 146:3362–3367

    Article  PubMed  CAS  Google Scholar 

  127. Su YQ, Sugiura K, Wigglesworth K, et al. (2008) Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development 135:111–121

    Article  PubMed  CAS  Google Scholar 

  128. Dragovic RA, Ritter LJ, Schulz SJ, et al. (2007) Oocyte-secreted factor activation of SMAD 2/3 signaling enables initiation of mouse cumulus cell expansion. Biol Reprod 76:848–857

    Article  PubMed  CAS  Google Scholar 

  129. Donnez J, Dolmans MM, Demylle D, et al. (2004) Live birth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet 364:1405–1410

    Article  PubMed  CAS  Google Scholar 

  130. Meirow D, Levron J, Eldar-Geva T, et al. (2005) Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. N Engl J Med 353:318–321

    Article  PubMed  CAS  Google Scholar 

  131. Demeestere I, Simon P, Emiliani S, et al. (2007) Fertility preservation: successful transplantation of cryopreserved ovarian tissue in a young patient previously treated for Hodgkin’s disease. Oncologist 12:1437–1442

    Article  PubMed  Google Scholar 

  132. Silber SJ, DeRosa M, Pineda J, et al. (2008) A series of monozygotic twins discordant for ovarian failure: Ovary transplantation (cortical versus microvascular) and cryopreservation. Hum Reprod 23:1531–1537

    Article  PubMed  CAS  Google Scholar 

  133. Andersen CY, Rosendahl M, Byskov AG, et al. (2008) Two successful pregnancies following autotransplantation of frozen/thawed ovarian tissue Hum Reprod 23:2266–2272

    Article  PubMed  Google Scholar 

  134. Shaw JM, Bowles J, Koopman P, et al. (1996) Fresh and cryopreserved ovarian tissue samples from donors with lymphoma transmit the cancer to graft recipient. Hum Reprod 11:1668–1673

    PubMed  CAS  Google Scholar 

  135. Sonmezer M, Oktay K (2004) Fertility preservation in female patients. Hum Reprod Update 10:251–266

    Article  PubMed  Google Scholar 

  136. Zhang J, Liu J, Xu KP, et al. (1995) Extracorporeal development and ultrarapid freezing of human fetal ova. J Assist Reprod Genet 12:361–368

    Article  PubMed  CAS  Google Scholar 

  137. Biron-Shental T, Fisch B, Van Den Hurk R, et al. (2004) Survival of frozen-thawed human ovarian fetal follicles in long-term organ culture. Fertil Steril 81:716–719

    Article  PubMed  Google Scholar 

  138. Sadeu JC, Cortvrindt R, Ron-El R, et al. (2006) Morphological and ultrastructural evaluation of cultured frozen-thawed human fetal ovarian tissue. Fertil Steril 85:1130–1141

    Article  PubMed  Google Scholar 

  139. Hovatta O, Silye R, Abir R, et al. (1997) Extracellular matrix improves survival of both stored and fresh human primordial and primary ovarian follicles in long-term culture. Hum Reprod 12:1032–1036

    Article  PubMed  CAS  Google Scholar 

  140. Rahimi G, Isachenko E, Sauer H, et al. (2001) Measurement of apoptosis in long-term cultures of human ovarian tissue. Reproduction 122:657–663

    Article  PubMed  CAS  Google Scholar 

  141. Otala M, Erkkila K, Tuuri T, et al. (2002) Cell death and its suppression in human ovarian tissue culture. Mol Hum Reprod 8:228–236

    Article  PubMed  CAS  Google Scholar 

  142. Eppig JJ, O’Brien MJ (1996) Development in vitro of mouse oocytes from primordial follicles. Biol Reprod 54:197–207

    Article  PubMed  CAS  Google Scholar 

  143. Cortvrindt R, Smitz J, Van Steirteghem A (1996) In-vitro maturation, fertilization and embryo development of immature oocytes from early preantral follicles from pre-pubertal mice in a simplified culture system. Hum Reprod 11:2656–2666

    PubMed  CAS  Google Scholar 

  144. O’Brien MJ, Pendola JK, Eppig JJ (2003) A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence. Biol Reprod 68:1682–1686

    Article  PubMed  CAS  Google Scholar 

  145. Isachenko V, Montag M, Isachenko E, et al. (2006) Effective method for in-vitro culture of cryopreserved human ovarian tissue. Reprod Biomed Online 13:228–234

    Article  PubMed  Google Scholar 

  146. Scott JE, Carlsson IB, Bavister BD, Hovatta O (2004) Human ovarian tissue cultures: Extracellular matrix composition, coating density and tissue dimensions. Reprod Biomed Online 9:287–293

    Article  PubMed  CAS  Google Scholar 

  147. Wright CS, Hovatta O, Margara R, et al. (1999) Effects of follicle-stimulating hormone and serum substitution on the in-vitro growth of human ovarian follicles. Hum Reprod 14:1555–1562.

    Article  PubMed  CAS  Google Scholar 

  148. Hovatta O, Wright C, Krausz T, et al. (1999) Human primordial, primary and secondary ovarian follicles in long-term culture: effect of partial isolation. Hum Reprod 14:2519–2524.

    Article  PubMed  CAS  Google Scholar 

  149. Louhio H, Hovatta O, Sjoberg J, Tuuri T (2000) The effects of insulin, and insulin-like growth factors I and II on human ovarian follicles in long-term culture. Mol Hum Reprod 6:694–698.

    Article  PubMed  CAS  Google Scholar 

  150. Hreinsson JG, Scott JE, Rasmussen C, et al. (2002) Growth differentiation factor-9 promotes the growth, development, and survival of human ovarian follicles in organ culture. J Clin Endocrinol Metab 87:316–321

    Article  PubMed  CAS  Google Scholar 

  151. Isachenko E, Isachenko V, Rahimi G, Nawroth F (2003) Cryopreservation of human ovarian tissue by direct plunging into liquid nitrogen. Eur J Obstet Gynecol Reprod Biol 108:186–193

    PubMed  CAS  Google Scholar 

  152. Otala M, Makinen S, Tuuri T, et al. (2004) Effects of testosterone, dihydrotestosterone, and 17beta-estradiol on human ovarian tissue survival in culture. Fertil Steril 82(Suppl. 3):1077–1085

    Article  PubMed  CAS  Google Scholar 

  153. Zhang P, Louhio H, Tuuri T, Sjoberg J, Hreinsson J, Telfer EE, et al. (2004) In vitro effect of cyclic adenosine 3′,5′-monophosphate (cAMP) on early human ovarian follicles. J Assist Reprod Genet 21:301–306

    Article  PubMed  CAS  Google Scholar 

  154. Schmidt KL, Kryger-Baggesen N, Byskov AG, Andersen CY (2005) Anti-Mullerian hormone initiates growth of human primordial follicles in vitro. Mol Cell Endocrinol 234:87–93

    Article  PubMed  CAS  Google Scholar 

  155. Carlsson IB, Laitinen MP, Scott JE, et al. (2006) Kit ligand and c-Kit are expressed during early human ovarian follicular development and their interaction is required for the survival of follicles in long-term culture. Reproduction 131:641–649

    Article  PubMed  CAS  Google Scholar 

  156. Carlsson IB, Scott JE, Visser JA, et al. (2006) Anti-Mullerian hormone inhibits initiation of growth of human primordial ovarian follicles in vitro. Hum Reprod 21:2223–2227

    Article  PubMed  CAS  Google Scholar 

  157. Isachenko V, Isachenko E, Reinsberg J, et al. (2007) Cryopreservation of human ovarian tissue: comparison of rapid and conventional freezing. Cryobiology 55:261–268

    Article  PubMed  CAS  Google Scholar 

  158. Morimoto Y, Oku Y, Sonoda M, et al. (2007) High oxygen atmosphere improves human follicle development in organ cultures of ovarian cortical tissues in vitro. Hum Reprod 22:3170–3177

    Article  PubMed  CAS  Google Scholar 

  159. Sadeu JC, Smitz J (2008) Growth differentiation factor-9 (GDF-9) and anti-müllerian hormone (AMH) expression in cultured human follicles from frozen-thawed ovarian tissue. Reprod Biomed Online 17:537–548

    Article  PubMed  CAS  Google Scholar 

  160. Isachenko V, Isachenko E, Reinsberg J, et al. (2008) Cryopreservation of human ovarian tissue: Effect of spontaneous and initiated ice formation. Reprod Biomed Online 16:336–345

    Article  PubMed  Google Scholar 

  161. Telfer EE, McLaughlin M, Ding C, Thong KJ (2008) A two-step serum-free culture system supports development of human oocytes from primordial follicles in the presence of activin. Hum Reprod 23:1151–1158

    Article  PubMed  CAS  Google Scholar 

  162. Roy SK, Treacy BJ (1993) Isolation and long-term culture of human preantral follicles. Fertil Steril 59:783–790

    PubMed  CAS  Google Scholar 

  163. Abir R, Franks S, Mobberley MA, et al. (1997) Mechanical isolation and in vitro growth of preantral and small antral human follicles. Fertil Steril 68:682–688

    Article  PubMed  CAS  Google Scholar 

  164. Roy SK, Terada DM (1999) Activities of glucose metabolic enzymes in human preantral follicles: in vitro modulation by follicle-stimulating hormone, luteinizing hormone, epidermal growth factor, insulin-like growth factor I, and transforming growth factor beta1. Biol Reprod 60:763–768

    Article  PubMed  CAS  Google Scholar 

  165. Abir R, Roizman P, Fisch B, et al. (1999) Pilot study of isolated early human follicles cultured in collagen gels for 24 hours. Hum Reprod 14:1299–1301

    Article  PubMed  CAS  Google Scholar 

  166. Abir R, Fisch B, Nitke S, et al. (2001) Morphological study of fully and partially isolated early human follicles. Fertil Steril 75:141–146

    Article  PubMed  CAS  Google Scholar 

  167. Xu M, Barrett SL, West-Farrell E, et al. (2009) In vitro grown human ovarian follicles from cancer patients support oocyte growth. Hum Reprod 24:2531–2540

    Article  PubMed  CAS  Google Scholar 

  168. Telfer E, Torrance C, Gosden RG (1990) Morphological study of cultured preantral ovarian follicles of mice after transplantation under the kidney capsule. J Reprod Fertil 89:565–571

    Article  PubMed  CAS  Google Scholar 

  169. Pangas SA, Saudye H, Shea LD, Woodruff TK (2003) Novel approach for the three-dimensional culture of granulosa cell-oocyte complexes. Tissue Eng 9:1013–1021

    Article  PubMed  CAS  Google Scholar 

  170. Heise M, Koepsel R, Russell AJ, McGee EA (2005) Calcium alginate microencapsulation of ovarian follicles impacts FSH delivery and follicle morphology. Reprod Biol Endocrinol 3:47

    Article  PubMed  CAS  Google Scholar 

  171. Xu M, Kreeger PK, Shea LD, Woodruff TK (2006) Tissue-engineered follicles produce live, fertile offspring. Tissue Eng 12:2739–2746

    Article  PubMed  CAS  Google Scholar 

  172. West R, Xu M, Woodruff TK, Shea LD (2007) Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials 28:4439–4448

    Article  PubMed  CAS  Google Scholar 

  173. Kreeger PK, Deck JW, Woodruff TK, Shea LD (2006) The in vitro regulation of ovarian follicle development using alginate-extracellular matrix gels. Biomaterials 27:714–723

    Article  PubMed  CAS  Google Scholar 

  174. Zhou H, Zhang Y (2005) Regulation of in vitro growth of preantral follicles by growth factors in goats Domest Anim Endocrinol 28:235–242

    Article  PubMed  CAS  Google Scholar 

  175. Newton H, Picton H, Gosden RG (1999) In vitro growth of oocyte-granulosa cell complexes isolated from cryopreserved ovine tissue. J Reprod Fertil 115:141–150

    Article  PubMed  CAS  Google Scholar 

  176. Cecconi S, Capacchietti G, Russo V, et al. (2004) In vitro growth of preantral follicles isolated from cryopreserved ovine ovarian tissue. Biol Reprod 70:12–17

    Article  PubMed  CAS  Google Scholar 

  177. Muruvi W, Picton HM, Rodway RG, Joyce IM (2005) In vitro growth of oocytes from primordial follicles isolated from frozen-thawed lamb ovaries. Theriogenology 64:1357–1370

    Article  PubMed  CAS  Google Scholar 

  178. Hulshof SC, Figueiredo JR, Beckers JF, et al. (1994) Isolation and characterization of preantral follicles from foetal bovine ovaries. Vet Q 16:78–80

    PubMed  CAS  Google Scholar 

  179. van den Hurk R, Spek ER, Hage WJ, et al. (1998) Ultrastructure and viability of isolated bovine preantral follicles. Hum Reprod Update 4:833–841

    Article  PubMed  Google Scholar 

  180. Katska L, Rynska B (1998) The isolation and in vitro culture of bovine preantral and early antral follicles of different size classes. Theriogenology 50:213–222

    Article  PubMed  CAS  Google Scholar 

  181. Itoh T, Kacchi M, Abe H, et al. (2002) Growth, antrum formation, and estradiol production of bovine preantral follicles cultured in a serum-free medium. Biol Reprod 67:1099–1105

    Article  PubMed  CAS  Google Scholar 

  182. Hirao Y, Nagai T, Kubo M, et al. (1994) In vitro growth and maturation of pig oocytes. J Reprod Fertil 100:333–339

    Article  PubMed  CAS  Google Scholar 

  183. Wu J, Emery BR, Carrell DT (2001) In vitro growth, maturation, fertilization, and embryonic development of oocytes from porcine preantral follicles. Biol Reprod 64:375–381

    Article  PubMed  CAS  Google Scholar 

  184. Mao J, Wu G, Smith MF, McCauley TC, Cantley TC, Prather RS, et al. (2002) Effects of culture medium, serum type, and various concentrations of follicle-stimulating hormone on porcine preantral follicular development and antrum formation in vitro. Biol Reprod 67:1197–1203

    Article  PubMed  CAS  Google Scholar 

  185. Eppig JJ, Schroeder AC (1989) Capacity of mouse oocytes from preantral follicles to undergo embryogenesis and development to live young after growth, maturation, and fertilization in vitro. Biol Reprod 41:268–276

    Article  PubMed  CAS  Google Scholar 

  186. Spears N, Boland NI, Murray AA, Gosden RG (1994) Mouse oocytes derived from in vitro grown primary ovarian follicles are fertile. Hum Reprod 9:527–532

    PubMed  CAS  Google Scholar 

  187. Roy SK, Greenwald GS (1996) Methods of separation and in-vitro culture of pre-antral follicles from mammalian ovaries. Hum Reprod Update 2:236–245

    Article  PubMed  CAS  Google Scholar 

  188. Hayashi M, McGee EA, Min G, et al. (1999) Recombinant growth differentiation factor-9 (GDF-9) enhances growth and differentiation of cultured early ovarian follicles. Endocrinology 140:1236–1244

    Article  PubMed  CAS  Google Scholar 

  189. Lenie S, Cortvrindt R, Adriaenssens T, Smitz J (2004) A reproducible two-step culture system for isolated primary mouse ovarian follicles as single functional units. Biol Reprod 71:1730–1738

    Article  PubMed  CAS  Google Scholar 

  190. Silva JR, van den Hurk R, Costa SH, et al. (2004) Survival and growth of goat primordial follicles after in vitro culture of ovarian cortical slices in media containing coconut water. Anim Reprod Sci 81:273–286

    Article  PubMed  Google Scholar 

  191. Mery L, Lefevre A, Benchaib M, et al. (2006) Follicular growth in vitro: detection of growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) during in vitro culture of ovine cortical slices. Mol Reprod Dev 74:767–774

    Article  CAS  Google Scholar 

  192. Wandji SA, Srsen V, Voss AK, et al. (1996) Initiation in vitro of growth of bovine primordial follicles. Biol Reprod 55:942–948

    Article  PubMed  CAS  Google Scholar 

  193. Braw-Tal R, Yossefi S (1997) Studies in vivo and in vitro on the initiation of follicle growth in the bovine ovary. J Reprod Fertil 109:165–171

    Article  PubMed  CAS  Google Scholar 

  194. Wandji SA, Srsen V, Nathanielsz PW, et al. (1997) Initiation of growth of baboon primordial follicles in vitro. Hum Reprod 12:1993–2001

    Article  PubMed  CAS  Google Scholar 

  195. Nilsson EE, Skinner MK (2002) Growth and differentiation factor-9 stimulates progression of early primary but not primordial rat ovarian follicle development. Biol Reprod 67:1018–1024

    Article  PubMed  CAS  Google Scholar 

  196. Durlinger AL, Gruijters MJ, Kramer P, et al. (2002) Anti-Mullerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology 143:1076–1084

    Article  PubMed  CAS  Google Scholar 

  197. Nilsson EE, Skinner MK (2004) Kit ligand and basic fibroblast growth factor interactions in the induction of ovarian primordial to primary follicle transition. Mol Cell Endocrinol 214:19–25

    Article  PubMed  CAS  Google Scholar 

  198. Hutt KJ, McLaughlin EA, Holland MK (2006) KIT/KIT ligand in mammalian oogenesis and folliculogenesis: roles in rabbit and murine ovarian follicle activation and oocyte growth. Biol Reprod 75:421–433

    Article  PubMed  CAS  Google Scholar 

  199. Nilsson EE, Skinner MK (2003) Bone morphogenetic protein-4 acts as an ovarian follicle survival factor and promotes primordial follicle development. Biol Reprod 69:1265–1272

    Article  PubMed  CAS  Google Scholar 

  200. Lee WS, Yoon SJ, Yoon TK, et al. (2004) Effects of bone morphogenetic protein-7 (BMP-7) on primordial follicular growth in the mouse ovary. Mol Reprod Dev 69:159–163

    Article  PubMed  CAS  Google Scholar 

  201. Holt JE, Jackson A, Roman SD, et al. (2006) CXCR4/SDF1 interaction inhibits the primordial to primary follicle transition in the neonatal mouse ovary. Dev Biol 293:449–460

    Article  PubMed  CAS  Google Scholar 

  202. Yang MY, Fortune JE (2007) Vascular endothelial growth factor stimulates the primary to secondary follicle transition in bovine follicles in vitro. Mol Reprod Dev 74:1095–1104

    Article  PubMed  CAS  Google Scholar 

  203. Sadeu JC, Adriaenssens T, Smitz J (2008) Expression of growth differentiation factor 9 (GDF-9), bone morphogenetic protein 15 (BMP-15) and anti-Müllerian hormone (AMH) in cultured mouse primary follicles. Reproduction 136:195–203

    Article  PubMed  CAS  Google Scholar 

  204. Sadeu JC, Mazoyer C, Smitz J (2008) Human follicle culture in vitro. In: Rizk B, Garcia-Velasco JA, Sallam HN, Makrigiannakis A (eds) Infertility and assisted reproduction TnQ Books and Journals Pvt Ltd, Cambridge, Chapter 3, pp 25–37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Sadeu, J.C., Nogueira, D. (2011). Folliculogenesis and oogenesis in vivo and in vitro, in humans females. In: Physiologie, pathologie et thérapie de la reproduction chez l’humain. Springer, Paris. https://doi.org/10.1007/978-2-8178-0061-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0061-5_1

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0060-8

  • Online ISBN: 978-2-8178-0061-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics