Skip to main content

Turbo product codes

  • Chapter
Book cover Codes and Turbo Codes

Part of the book series: Collection IRIS ((IRIS))

  • 1411 Accesses

Abstract

Because of the Gilbert-Varshamov bound, it is necessary to have long codes in order to obtain block codes with a large minimum Hamming distance (MHD) and therefore high error correction capability. But, without a particular structure, it is almost impossible to decode these codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. P. Adde, R. Pyndiah, and O. Raoul. Performance and complexity of block turbo decoder circuits. In Proceedings of Third International Conference on Electronics, Circuits and Systems, (ICECS′96), pages 172–175, Rhodes, Greece, 1996.

    Google Scholar 

  2. C. Berrou, A. Glavieux, and P. Thitimajshima. Near shannon limit error-correcting coding and decoding: turbo-codes. In Proceedings of IEEE International Conference on Communications (ICC′93), pages 1064–1070, GENEVA, May 1993.

    Google Scholar 

  3. J. Cuevas, P. Adde, and S. Kerouedan. Information theory turbo decoding of product codes for gigabit per second applications and beyond. European Transactions on Telecommunications, 17(1):345–55, Jan. 2006.

    Article  Google Scholar 

  4. P. Elias. Error-free coding. IEEE Transactions on Information Theory, 4(4):29–39, Sept. 1954.

    Article  MathSciNet  Google Scholar 

  5. K. Farrell, L. Rudolph, C. Hartmann, and L. Nielsen. Decoding by local optimization. IEEE Transactions on Information Theory, 29(5):740–743, Sept. 1983.

    Article  MATH  Google Scholar 

  6. A. Goalic, K. Cavalec-Amis, and V. Kerbaol. Real-time turbo decoding of block turbo codes using the hartmann-nazarov algorithm on the dsp texas tms320c6201. In Proceedings of International Conference on Communications (ICC′2002), New-York, 2002.

    Google Scholar 

  7. J. Hagenauer, E. Offer, and L. Papke. Iterative decoding of binary block and convolutional codes. IEEE Transactions on Information Theory, IT-42:429–445, 1996.

    Article  Google Scholar 

  8. C.R.P. Hartmann and L.D. Rudolph. An optimum symbol-by-symbol decoding rule for linear codes. IEEE Transactions on Inforamtion Theory, IT-22:514–517, 1974.

    MathSciNet  Google Scholar 

  9. A. Kothiyal and O.Y. Takeshita. A comparison of adaptative belief propagation and the best graph algorithm for the decoding of linear block codes. In Proceedings of IEEE International Symposium on Information Theory, pages 724–728, 2005.

    Google Scholar 

  10. R. Kotter and A. Vardy. Algebraic soft-decision decoding of reed-solomon codes. In Proceedings og IEEE International Symposium on Information Theory, page 61, 2000.

    Google Scholar 

  11. M. Lee and M. Kaveh. Fast hadamard transform based on a simple matrix factorization. IEEE Transactions on Acoustics, Speech, and Signal Processing, 34:1666–1667, 1986.

    Article  Google Scholar 

  12. C.Y. Liu and S. Lin. Turbo encoding and decoding of reed-solomon codes through binary decomposition and self-concatenation. IEEE Transactions on Communications, 52(9):1484–1493, Sept. 2004.

    Article  Google Scholar 

  13. L.E. Nazarov and V.M. Smolyaninov. Use of fast walsh-hadamard transformation for optimal symbol-by-symbol binary block-code decoding. Electronics Letters, 34:261–262, 1998.

    Article  Google Scholar 

  14. R. Pyndiah, A. Glavieux, A. Picart, and S. Jacq. Near optimum decoding of product codes. In Proceedings of IEEE Global Communications Conference (GLOBECOM′94), San Francisco, 1994.

    Google Scholar 

  15. S. M. Reddy and J. P. Robinson. Random error and burst corrections by iterated codes. IEEE Transactions on Information Theory, 18(1):182–185, 1972.

    Article  MATH  MathSciNet  Google Scholar 

  16. N. Sendrier. Codes correcteurs à haut pouvoir de correction. PhD thesis, Université Paris VI, 1991.

    Google Scholar 

  17. V. Sorokine, F.R. Kschischang, and V. Durand. Trellis based decoding of binary linear block codes. Lecture Notes in Computer Science, 793:270–286, 1994.

    MathSciNet  Google Scholar 

  18. M. Sudan. Decoding of reed-solomon codes beyond the error correction bound. Journal of Complexity, 12:180–193, 1997.

    Article  MathSciNet  Google Scholar 

  19. J. Wolf. Efficient maximum likelihood decoding of linear block codes using a trellis. IEEE Transactions on Information Theory, 24:76–80, 1978.

    Article  MATH  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag France, Paris

About this chapter

Cite this chapter

(2010). Turbo product codes. In: Berrou, C. (eds) Codes and Turbo Codes. Collection IRIS. Springer, Paris. https://doi.org/10.1007/978-2-8178-0039-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0039-4_8

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0038-7

  • Online ISBN: 978-2-8178-0039-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics