Skip to main content

Thérapeutiques ciblées dans le traitement des tumeurs solides

  • Chapter
Thérapeutique du cancer
  • 780 Accesses

Résumé

La révolution des traitements ciblés a réellement débuté dans les tumeurs solides (si l’on fait abstraction des hormonothérapies) avec les résultats spectaculaires du trastuzumab dans les tumeurs du sein présentant une amplification du gène HER2, permettant l’obtention d’une AMM en 2000 dans les formes métastatiques puis en adjuvant quelques années plus tard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références References

  1. van Oosterom AT, Judson I, Verweij J et al. (2001) European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group. Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study. Lancet 358: 1421–1423

    Article  PubMed  Google Scholar 

  2. Demetri GD, von Mehren M, Blanke CD et al. (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347: 472–480

    Article  PubMed  CAS  Google Scholar 

  3. Heinrich MC, Corless CL, Demetri GD et al. (2003) Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 21: 4342–4349

    Article  PubMed  CAS  Google Scholar 

  4. Verweij J, Casali PG, Zalcberg J et al. (2004) Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet 364: 1127–1134

    Article  PubMed  CAS  Google Scholar 

  5. Blay JY, Adenis A, Ray-Coquard I et al. (2009) Is there a role for discontinuing imatinib in patients with advanced gastrointestinal stromal tumour? Curr Opin Oncol 21: 360–366. Review

    Article  PubMed  CAS  Google Scholar 

  6. Wesolowski J, Alzogaray V, Reyelt J et al. (2009) Single domain antibodies: promising experimental and therapeutic tools in infection and immunity. Med Microbiol Immunol 198: 157–174. Review

    Article  PubMed  CAS  Google Scholar 

  7. Emile JF, Brahimi S, Coindre J et al. (2009) Molecular epidemiology of GISTs: incidence of PDGFRA and KIT exon 9 mutations in the large French population-based study moleGIST. Proc ASCO, Abstr 10535

    Google Scholar 

  8. Pantaleo MA, Astolfi A, Di Battista M et al. (2009) Insulin-like growth factor 1 receptor expression in wild-type GISTs: a potential novel therapeutic target. Int J Cancer 125: 2991–2994

    Article  PubMed  CAS  Google Scholar 

  9. Miettinen M, Wang ZF, Lasota J (2009) DOG1 antibody in the differential diagnosis of gastrointestinal stromal tumors: a study of 1840 cases. Am J Surg Pathol 33: 1401–1408

    Article  PubMed  Google Scholar 

  10. Duffaud F, Ray-Coquard I, Bui B et al. (2009) Time to secondary resistance after interruption of imatinib:updated results of the prospective French Sarcoma Group randomized phase III trial on long-term survival. Proc ASCO, Abstr 10508

    Google Scholar 

  11. Dematteo RP, Ballman KV, Antonescu CR (2009) American College of Surgeons Oncology Group (ACOSOG) Intergroup Adjuvant GIST Study Team. Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. Lancet 373: 1058–1060

    Article  CAS  Google Scholar 

  12. Le Cesne A, Blay JY, Bui BN et al. (2010) Phase II study of oral masitinib mesilate in imatinib-naïve patients with locally advanced or metastatic gastro-intestinal stromal tumour (GIST). Eur J Cancer 46: 1344–1351

    Article  PubMed  CAS  Google Scholar 

  13. Slamon D.J., Clark G.M., Wrong S.G. et al. (1987) Human breast cancer, correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177–182

    Article  PubMed  CAS  Google Scholar 

  14. Beuzeboc P (2004) Indications de l’Herceptin dans le traitement du cancer du sein. Gynécologie Obstétrique & Fertilité 32: 164–172

    Article  CAS  Google Scholar 

  15. Dieras V, Vincent-salomon V, Degeorges A et al. (2007) Trastuzumab (Herceptin) et cancer du sein. Mécanismes de résistance Bull Cancer 94: 259–266

    CAS  Google Scholar 

  16. Slamon D, Leyland-Jones B., Shak S et al. (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344: 783–792

    Article  PubMed  CAS  Google Scholar 

  17. Seidman A, Hudis C, Pierri MK et al. (2002) Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol 20: 1215–1221

    Article  PubMed  CAS  Google Scholar 

  18. Kaufman B, Mackey JR, Clemens MR et al. (2009) Trastuzumab plus anastrozole versus anastrozole alone for the treatment of postmenopausal women with human epidermal growth factor receptor 2-positive, hormone receptor-positive metastatic breast cancer: results from the randomized phase III TAnDEM study. J Clin Oncol 27: 5529–5537

    Article  PubMed  CAS  Google Scholar 

  19. Buzdar AU, Valero V, Ibrahim NK et al. (2007) Neoadjuvant therapy with paclitaxel followed by 5-fluorouracil, epirubicin, and cyclophosphamide chemotherapy and concurrent trastuzumab in human epidermal growth factor receptor 2-positive operable breast cancer: an update of the initial randomized study population and data of additional patients treated with the same regimen. Clin Cancer Res 13: 228–233

    Article  PubMed  CAS  Google Scholar 

  20. Gianni L, Eiermann W, Semiglazov V et al. (2010) Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab versus neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet 375: 377–384

    Article  PubMed  CAS  Google Scholar 

  21. Untch M, Rezai M, Loibl S et al. (2010) Neoadjuvant treatment with trastuzumab in HER2-positive breast cancer: results from the GeparQuattro study. J Clin Oncol 28: 2024–2031

    Article  PubMed  CAS  Google Scholar 

  22. Platini C, Long J, Walter S (2006) Meningeal carcinomatosis from breast cancer treated with intrathecal trastuzumab. Lancet Oncol 7: 778–780

    Article  PubMed  Google Scholar 

  23. Geyer CE, Forster J, Lindquist D et al. (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355: 2733–2743

    Article  PubMed  CAS  Google Scholar 

  24. Lin NU, Diéras V, Paul D et al. (2009) Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clin Cancer Res 15:1452–1459

    Article  PubMed  CAS  Google Scholar 

  25. Di Leo A, Gomez HL, Aziz Z et al. (2008) Lapatinib plus paclitaxel. J Clin Oncol 26: 5544–5552

    Article  PubMed  CAS  Google Scholar 

  26. Jones KL, Buzdar AU (2009) Evolving novel anti-HER2 strategies. Lancet Oncol 10: 1179–1187. Review

    Article  PubMed  CAS  Google Scholar 

  27. Agus DB, Gordon MS, Taylor C et al. (2005) Phase I clinical study of pertuzumab, a novel HER dimerization inhibitor, in patients with advanced cancer. J Clin Oncol 23: 2534–2543

    Article  PubMed  CAS  Google Scholar 

  28. Gianni L, Lladó A, Bianchi G et al. (2010) Open-label, phase II,multicenter, randomized study of the efficacy and safety of two dose levels of Pertuzumab, a human epidermal growth factor receptor 2 dimerization inhibitor, in patients with human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol 28: 1131–1137

    Article  PubMed  CAS  Google Scholar 

  29. Burstein HJ, Sun Y, Dirix LY et al. (2010) Neratinib, an irreversible ErbB receptor tyrosine kinase inhibitor, in patients with advanced ErbB2-positive breast cancer. J Clin Oncol 28: 1301–1307

    Article  PubMed  CAS  Google Scholar 

  30. Krop IE, Beeram M, Modi S et al. (2010) Phase I Study of Trastuzumab-DM1, a HER2 Antibody-Drug Conjugate, Given Every 3 Weeks to Patients With HER2-Positive Metastatic Breast Cancer. J Clin Oncol 28: 2698–2704

    Article  PubMed  CAS  Google Scholar 

  31. Van Cutsem E, Köhne CH, Hitre E et al. (2009) Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 360: 1408–1417

    Article  PubMed  Google Scholar 

  32. Van Cutsem E, Peeters M, Siena S et al. (2007) Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol 25: 1658–1664

    Article  PubMed  CAS  Google Scholar 

  33. Di Nicolantonio F, Martini M, Molinari F et al. (2008) Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 26: 5705–5712

    Article  PubMed  CAS  Google Scholar 

  34. Amado RG, Wolf M, Peeters M et al. (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26: 1626–1634

    Article  PubMed  CAS  Google Scholar 

  35. Bonner JA, Harari PM, Giralt J et al. (2010) Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol 11: 21–28

    Article  PubMed  CAS  Google Scholar 

  36. Vermorken JB, Mesia R, Rivera F et al. (2008) Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med 359: 1116–1127

    Article  PubMed  CAS  Google Scholar 

  37. Crinò L, Cappuzzo F, Zatloukal P et al. (2008) Gefitinib versus vinorelbine in chemotherapy-naive elderly patients with advanced non-small-cell lung cancer (INVITE): a randomized, phase II study. J Clin Oncol 26: 4253–4260

    Article  PubMed  CAS  Google Scholar 

  38. Goss G, Ferry D, Wierzbicki R et al. (2009) Randomized phase II study of gefitinib compared with placebo in chemotherapy-naive patients with advanced non-small-cell lung cancer and poor performance status. J Clin Oncol 27: 2253–2260

    Article  PubMed  CAS  Google Scholar 

  39. Giaccone G, Herbst RS, Manegold C et al. (2004) Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial—INTACT 1. J Clin Oncol 22: 777–784

    Article  PubMed  CAS  Google Scholar 

  40. Herbst RS, Giaccone G, Schiller JH et al. (2004) Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial—INTACT 2. J Clin Oncol 22: 785–794

    Article  PubMed  CAS  Google Scholar 

  41. Mok TS, Wu YL, Thongprasert S et al. (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361: 947–957

    Article  PubMed  CAS  Google Scholar 

  42. Saijo N, Takeuchi M, Kunitoh H (2009) Reasons for response differences seen in the V15-32, INTEREST and IPASS trials. Nat Rev Clin Oncol 6: 287–294. Review

    Article  PubMed  CAS  Google Scholar 

  43. Butts CA, Bodkin D, Middleman EL et al. (2007) Randomized phase II study of gemcitabine plus cisplatin or carboplatin [corrected], with or without cetuximab, as first-line therapy for patients with advanced or metastatic non small-cell lung cancer. J Clin Oncol 25: 5777–5784

    Article  PubMed  CAS  Google Scholar 

  44. Lynch TJ, Patel T, Dreisbach L et al. (2010) Cetuximab and first-line taxane/carboplatin chemotherapy in advanced non-small-cell lung cancer: results of the randomized multicenter phase III trial BMS099. J Clin Oncol 28: 911–917

    Article  PubMed  CAS  Google Scholar 

  45. Pirker R, Pereira JR, Szczesna A et al. (2009) FLEX Study Team. Cetuximab plus chemotherapy in patients with advanced non-small-cell lung cancer (FLEX): an open-label randomised phase III trial. Lancet 373: 1525–1531

    Article  PubMed  CAS  Google Scholar 

  46. Baserga R, Peruzzi F, Reiss K (2003) The IGF-1 receptor in cancer biology. Int J Cancer 107: 873–877. Review

    Article  PubMed  CAS  Google Scholar 

  47. Goetsch L, Gonzalez A, Leger O et al. (2005) A recombinant humanized anti-insulin-like growth factor receptor type I antibody (h7C10) enhances the antitumor activity of vinorelbine and anti-epidermal growth factor receptor therapy against human cancer xenografts. Int J Cancer 113: 316–328

    Article  PubMed  CAS  Google Scholar 

  48. Haluska P, Carboni JM, Loegering DA et al. (2006) in vitro and in vivo antitumor effects of the dual insulin-like growth factor-I/insulin receptor inhibitor, BMS-554417. Cancer Res 66: 362–371

    Article  PubMed  CAS  Google Scholar 

  49. Broussas M, Dupont J, Gonzalez A et al. (2009) Molecular mechanisms involved in activity of h7C10, a humanized monoclonal antibody, to IGF-1 receptor. Int J Cancer 124: 2281–2293

    Article  PubMed  CAS  Google Scholar 

  50. Haluska P, Shaw HM, Batzel GN et al. (2007) Phase I dose escalation study of the anti insulin-like growth factor-I receptor monoclonal antibody CP-751,871 in patients with refractory solid tumors. Clin Cancer Res 13: 5834–5840

    Article  PubMed  CAS  Google Scholar 

  51. Carboni JM, Wittman M, Yang Z et al. (2009) BMS-754807, a small molecule inhibitor of insulin-like growth factor-1R/IR. Mol Cancer Ther 8: 3341–3349

    Article  PubMed  CAS  Google Scholar 

  52. OMS D, Postel-Vinay S, Molife LR et al. (2010) Safety, pharmacokinetics, and preliminary activity of the anti-IGF-1R antibody figitumumab (CP-751,871) in patients with sarcoma and Ewing’s sarcoma: a phase 1 expansion cohort study. Lancet Oncol 11: 129–135

    Article  CAS  Google Scholar 

  53. Karp DD, Pollak MN, Cohen RB et al. (2009) Safety, pharmacokinetics, and pharmacodynamics of the insulin-like growth factor type 1 receptor inhibitor figitumumab (CP-751,871) in combination with paclitaxel and carboplatin. J Thorac Oncol 4: 1397–1403

    Article  PubMed  Google Scholar 

  54. Stoker M, Gherardi E, Perryman M, Gray J (1987) Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature 327: 239–242

    Article  PubMed  CAS  Google Scholar 

  55. Bellon SF, Kaplan-Lefko P, Yang Y et al. (2008) c-Met inhibitors with novel binding mode show activity against several hereditary papillary renal cell carcinoma-related mutations. J Biol Chem 283: 2675–2683

    Article  PubMed  CAS  Google Scholar 

  56. Davis IJ, McFadden AW, Zhang Y et al. (2010) Identification of the receptor tyrosine kinase c-Met and its ligand, hepatocyte growth factor, as therapeutic targets in clear cell sarcoma. Cancer Res 70: 639–645

    Article  PubMed  CAS  Google Scholar 

  57. Gordon MS, Sweeney CS, Mendelson DS et al. (2010) Safety, pharmacokinetics, and pharmacodynamics of AMG 102, a fully human hepatocyte growth factor-neutralizing monoclonal antibody, in a first-in-human study of patients with advanced solid tumors. Clin Cancer Res 16: 699–710

    Article  PubMed  CAS  Google Scholar 

  58. Vignot S, Faivre S, Aguirre D, Raymond E ( 2005) mTOR-targeted therapy of cancer with rapamycin dérivatives. N Ann Oncol 16: 525–537. Review

    Article  CAS  Google Scholar 

  59. Hudes G, Carducci M, Tomczak P et al. (2007) Global ARCC Trial. Temsirolimus, interféron alfa, or both for advanced renal-cell carcinoma. N Engl J Med 356: 2271–2281

    Article  PubMed  CAS  Google Scholar 

  60. Motzer RJ, Escudier B, Oudard S et al. (2008) RECORD-1 Study Group. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372: 449–456

    Article  PubMed  CAS  Google Scholar 

  61. Baselga J, Semiglazov V, van Dam P et al. (2009) Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with estrogen receptor-positive breast cancer. J Clin Oncol 27: 2630–2637

    Article  PubMed  CAS  Google Scholar 

  62. Yao JC, Lombard-Bohas C, Baudin E et al. (2010) Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol 28: 69–76

    Article  PubMed  CAS  Google Scholar 

  63. Glimelius B, Lahn M, Gawande S et al. (2010) A window of opportunity phase II study of enzastaurin in chemonaive patients with asymptomatic metastatic colorectal cancer. Ann Oncol 21: 1020–1026

    Article  PubMed  CAS  Google Scholar 

  64. Wick W, Puduvalli VK, Chamberlain MC et al. (2010) Phase III study of enzastaurin compared with lomustine in the treatment of recurrent intracranial glioblastoma. J Clin Oncol 28: 1168–1174

    Article  PubMed  CAS  Google Scholar 

  65. Chiappori A, Bepler G, Barlesi F et al. (2010) Phase II, double-blinded, randomized study of enzastaurin plus pemetrexed as second-line therapy in patients with advanced non-small cell lung cancer. J Thorac Oncol 5: 369–375

    Article  PubMed  Google Scholar 

  66. Butowski N, Chang SM, Lamborn KR et al. (2010) Enzastaurin plus temozolomide with radiation therapy in glioblastoma multiforme: A phase I study. Neuro Oncol 12: 608–613

    Article  PubMed  CAS  Google Scholar 

  67. Galanis E, Buckner JC (2010) Enzastaurin in the treatment of recurrent glioblastoma: a promise that did not materialize. J Clin Oncol 28: 1097–1098

    Article  PubMed  CAS  Google Scholar 

  68. Strumberg D, Richly H, Hilger RA et al. (2005) Phase I clinical and pharmacokinetic study of the novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced, refractory solid tumors. J Clin Oncol 23: 965–972

    Article  PubMed  CAS  Google Scholar 

  69. Lorusso PM, Adjei AA, Varterasian M et al. (2005) Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patinets with Advanced malignancies. J Clin Oncol 23: 5281–5293

    Article  PubMed  CAS  Google Scholar 

  70. Rinehart J, Adjei AA, Lorusso PM et al. (2004) Multicenter phase II study of the oral MEK inhibitor, in patients with Advanced malignacies. J Clin Oncol 22: 4456–4462

    Article  PubMed  CAS  Google Scholar 

  71. Adjei AA (2001) Blocking oncogenic Ras signaling for cancer therapy. J Natl Cancer Inst 93: 1062–1074

    Article  PubMed  CAS  Google Scholar 

  72. Araujo J, Logothetis C (2010) Dasatinib: A potent SRC inhibitor in clinical development for the treatment of solid tumors. Cancer Treat Rev 36: 492–500

    Article  PubMed  CAS  Google Scholar 

  73. Fizazi K (2007) The role of Src in prostate cancer. Ann Oncol 18: 1765–1773

    Article  PubMed  CAS  Google Scholar 

  74. Saad F (2009) Src as a therapeutic target in men with prostate cancer and bone metastases. BJU Int 103: 434–440. Review

    Article  PubMed  CAS  Google Scholar 

  75. Yu EY, Wilding G, Posadas E et al. (2009) Phase II study of dasatinib in patients with metastatic castration-resistant prostate cancer. Clin Cancer Res 15: 7421–7428

    Article  PubMed  CAS  Google Scholar 

  76. Fong PC, Boss DS, Yap TA et al. (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361: 123–134

    Article  PubMed  CAS  Google Scholar 

  77. Fong PC, Yap TA, Boss DS et al. (2010) Poly(ADP)-Ribose Polymerase Inhibition: Frequent Durable Responses in BRCA Carrier Ovarian Cancer Correlating With Platinum-Free Interval. J Clin Oncol 28: 2512–2519

    Article  PubMed  CAS  Google Scholar 

  78. Frizzell KM, Kraus WL (2009) PARP inhibitors and the treatment of breast cancer: beyond BRCA1/2 ? Breast Cancer Res 11: 111

    Article  PubMed  CAS  Google Scholar 

  79. Vincent-Salomon A, Macgrogan G, Charaffe-Jauffret E et al. (2010) Identification of basal-like carcinomas in clinical practice: “triple zero/BRCA1-like” carcinomas. Bull Cancer 97: 357–363

    PubMed  CAS  Google Scholar 

  80. Lipton A, Steger GG, Figueroa J et al. (2008) Extended efficacy and safety of dénosumab in breast cancer patients with bone metastases not receiving prior bisphosphonate therapy. Clin Cancer Res 14: 6690–6696

    Article  PubMed  CAS  Google Scholar 

  81. Fizazi K, Lipton A, Mariette X et al. (2009) Randomized phase II trial of dénosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates. J Clin Oncol 27: 1564–1571

    Article  PubMed  CAS  Google Scholar 

  82. Neville-Webbe HL, Coleman RE (2010) Bisphosphonates and RANK ligand inhibitors for the treatment and prevention of metastatic bone disease. Eur J Cancer 46: 1211–1222

    Article  PubMed  CAS  Google Scholar 

  83. Lipton A, Siena S, Rader M et al. (2010) Comparison of dénosumab versus zoledronic acid (ZA) for treatment of bone metastases in advanced cancer patients: An integrated analysis of 3 pivotal trials. Ann Oncol 21(Suppl. 8), 1 249 p.

    Google Scholar 

  84. Ellis GK, Bone HG, Chlebowski R et al. (2008) Randomized trial of dénosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. J Clin Oncol 26: 4875–4882

    Article  PubMed  CAS  Google Scholar 

  85. Smith MR, Egerdie B, Hernández Toriz N et al. (2009) Denosumab HALT Prostate Cancer Study Group. Denosumab in men receiving androgendeprivation therapy for prostate cancer. N Engl J Med 361: 745–755

    Article  PubMed  CAS  Google Scholar 

  86. Carrol VA, Ashcroft M (2006) Role of hypoxia-inducible factor (HIF)-1alpha versus HIF-2alpha in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von Hippel-Lindau function: implications for targeting the HIF pathway. Cancer Res 66: 6264–6270

    Article  Google Scholar 

  87. Zhu X, Wu S, Dahut WL, Parikh CR (2007) Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am J Kidney Dis 49: 186–193

    Article  PubMed  CAS  Google Scholar 

  88. Halimi JM, Azizi M, Bobrie G et al. (2008) Vascular and renal effects of antiangiogenic therapy. Nephrol Ther 4: 602–615

    Article  PubMed  Google Scholar 

  89. Hurwitz H, Fehrenbacher L, Novotny W et al. (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350: 2335–2342

    Article  PubMed  CAS  Google Scholar 

  90. Allegra CJ, Yothers G, O’Connell MJ et al. (2009) Initial safety report of NSABP C-08: A randomized phase III study of modified FOLFOX6 with or without bevacizumab for the adjuvant treatment of patients with stage II or III colon cancer. J Clin Oncol 27: 3385–3390

    Article  PubMed  CAS  Google Scholar 

  91. Sandler A, Gray R, Perry MC et al. (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355: 2542–2550

    Article  PubMed  CAS  Google Scholar 

  92. Miller K, Wang M, Gralow J et al. (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer N Engl J Med 357: 2666–2676

    Article  PubMed  CAS  Google Scholar 

  93. Escudier B, Bellmunt J, Négrier S et al. (2010) Phase III trial of bevacizumab plus interféron alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): final analysis of overall survival. J Clin Oncol 28: 2144–2150

    Article  PubMed  CAS  Google Scholar 

  94. Rini BI, Halabi S, Rosenberg JE et al. (2010) Phase III trial of bevacizumab plus interféron alfa versus interféron alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J Clin Oncol 28: 2137–2143

    Article  PubMed  CAS  Google Scholar 

  95. Vredenburgh JJ, Desjardins A et al. (2007) Bevacizumab plus irinotécan in recurrent glioblastoma multiforme. J Clin Oncol 25: 4722–479

    Article  PubMed  CAS  Google Scholar 

  96. Norden AD, Young GS, Setayesh K et al. (2008) Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of récurrence. Neurology 70: 779–787

    Article  PubMed  CAS  Google Scholar 

  97. Guiu S, Taillibert S, Chinot O et al. (2008) Bevacizumab/irinotecan. An active treatment for recurrent high grade gliomas: preliminary results of an ANOCEF Multicenter Study. Rev Neurol 164: 588–594

    Article  PubMed  CAS  Google Scholar 

  98. Hasskarl J (2010) Sorafénib. Recent Results Cancer Res 184: 61–70

    Article  PubMed  CAS  Google Scholar 

  99. Llovet JM, Ricci S, Mazzaferro V et al. (2008) SHARP Investigators Study Group. Sorafénib in advanced hepatocellular carcinoma. N Engl J Med 359: 378–390

    Article  PubMed  CAS  Google Scholar 

  100. Verslype C, Van Cutsem E, Dicato M et al. (2009) The management of hepatocellular carcinoma. Current expert opinion and recommendations derived from the 10th World Congress on Gastrointestinal Cancer, Barcelona, 2008. Ann Oncol 20Suppl 7: vii1–vii6

    Article  PubMed  Google Scholar 

  101. Rosmorduc O, Chevreau C, Dielenseger P et al. (2010) Guidelines for treatment of hepatocellular or renal carcinoma with sorafénib. Gastroenterol Clin Biol 34: 161–167

    Article  PubMed  CAS  Google Scholar 

  102. Escudier B, Eisen T, Stadler WM et al. (2007) TARGET Study Group. Sorafénib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356: 125–134

    Article  PubMed  CAS  Google Scholar 

  103. Kloos RT, Ringel MD, Knopp MV et al. (2009) Phase II trial of sorafénib in metastatic thyroid cancer. J Clin Oncol 27: 1675–1684

    Article  PubMed  CAS  Google Scholar 

  104. Gore ME, Szczylik C, Porta C et al. (2009) Safety and efficacy of sunitinib for metastatic renal-cell carcinoma: an expanded-access trial. Lancet Oncol 10: 757–763

    Article  PubMed  CAS  Google Scholar 

  105. Motzer RJ, Hutson TE, Tomczak P et al. (2007) Sunitinib versus interféron alfa in metastatic renal-cell carcinoma. N Engl J Med 356: 115–124

    Article  PubMed  CAS  Google Scholar 

  106. Motzer RJ, Hutson TE, Tomczak P et al. (2009) Overall Survival and Updated Results for Sunitinib Compared With Interferon Alfa in Patients With Metastatic Renal Cell Carcinoma. J Clin Oncol 27: 3584–3590

    Article  PubMed  CAS  Google Scholar 

  107. Sternberg CN, Davis ID, Mardiak J et al. (2010) Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol 28: 1061–1068

    Article  PubMed  CAS  Google Scholar 

  108. Rixe O, Bukowski RM, Michaelson MD et al. (2007) Axitinib treatment in patients with cytokine-refractory metastatic renal cell cancer:a phase II study. Lancet Oncol 11: 956–957

    Google Scholar 

  109. Rini BI, Wilding G, Hudes G et al. (2009) Phase II study of axitinib in sorafenib-refractory metastatic renal cell carcinoma. J Clin Oncol 27: 4462–4468

    Article  PubMed  CAS  Google Scholar 

  110. Heinrich MC, Corless CL, Demetri GD et al. (2003) Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 21: 4342–4349

    Article  PubMed  CAS  Google Scholar 

  111. Debiec-Rychter M, Sciot R, Le Cesne A et al. (2006) EORTC Soft Tissue and Bone Sarcoma Group; Italian Sarcoma Group; Australasian GastroIntestinal Trials Group. KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours. Eur J Cancer 42: 1093–1103

    Article  PubMed  CAS  Google Scholar 

  112. Vincent-Salomon A, MacGrogan G, Couturier J et al. (2003) Calibration of immunohistochemistry for assessment of HER-2 in breast cancer: results of the French multicentre GEFPICS study. Histopathology 42: 337–347

    Article  PubMed  CAS  Google Scholar 

  113. Wolff AC, Hammond ME, Schwartz JN et al. (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25: 118–145

    Article  PubMed  CAS  Google Scholar 

  114. Vogel CL, Cobleigh MA, Tripathy D et al. (2002) M. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20: 719–726

    Article  PubMed  CAS  Google Scholar 

  115. Vincent-Salomon A, Jouve M, Genin P et al. (2002) HER2 status in patients with breast carcinoma is not modified selectively by preoperative chemotherapy and is stable during the metastatic proces. Cancer 94: 2169–2173

    Article  PubMed  CAS  Google Scholar 

  116. Cunningham D, Humblet Y, Siena S et al. (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351: 337–345

    Article  PubMed  CAS  Google Scholar 

  117. Moroni M, Veronese S, Benvenuti S et al. (2005) Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol 6: 279–286

    Article  PubMed  CAS  Google Scholar 

  118. Sartore-Bianchi A, Moroni M, Veronese S et al. (2007) Epidermal growth factor receptor gene copy number and clinical outcome of metastatic colorectal cancer treated with panitumumab. J Clin Oncol 25: 3238–3245

    Article  PubMed  CAS  Google Scholar 

  119. Lynch TJ, Bell DW, Sordella R et al. (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350: 2129–2139

    Article  PubMed  CAS  Google Scholar 

  120. Paez JG, Jänne PA, Lee JC et al. (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304: 1497–1500

    Article  PubMed  CAS  Google Scholar 

  121. Inoue A, Kobayashi K, Usui K et al. (2009) North East Japan Gefitinib Study Group. First-line gefitinib for patients with advanced non-small-cell lung cancer harboring epidermal growth factor receptor mutations without indication for chemotherapy. J Clin Oncol 27:1394–1400

    Article  PubMed  CAS  Google Scholar 

  122. Ji H, Zhao X, Yuza Y, Shimamura T et al. (2006) Epidermal growth factor receptor variant III mutations in lung tumorigenesis and sensitivity to tyrosine kinase inhibitors. Proc Natl Acad Sci USA 103: 7817–7822

    Article  PubMed  CAS  Google Scholar 

  123. Lo HW (2010) EGFR-targeted therapy in malignant glioma: novel aspects and mechanisms of drug resistance. Curr Mol Pharmacol 3: 37–52

    PubMed  CAS  Google Scholar 

  124. Lièvre A, Bachet JB, Boige V (2008) KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol 26: 374–379

    Article  PubMed  CAS  Google Scholar 

  125. Amado RG, Wolf M, Peeters M et al. (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26: 1626–1634

    Article  PubMed  CAS  Google Scholar 

  126. van Krieken JH, Jung A, Kirchner T et al. (2008) KRAS mutation testing for predicting response to anti-EGFR therapy for colorectal carcinoma: proposal for an European quality assurance program. Virchows Arch 453: 417–431

    Article  PubMed  CAS  Google Scholar 

  127. Di Nicolantonio F, Martini M, Molinari F et al. (2008) Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 26: 5705–5712

    Article  PubMed  CAS  Google Scholar 

  128. Laurent-Puig P, Cayre A, Manceau G et al. (2009) Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wildtype KRAS metastatic colon cancer. J Clin Oncol 27: 5924–5930

    Article  PubMed  CAS  Google Scholar 

  129. Benvenuti S, Sartore-Bianchi A, Di Nicolantonio F et al. (2007) Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res 67: 2643–268

    Article  PubMed  CAS  Google Scholar 

  130. Pirker R, Pereira JR, Szczesna A et al. (2009) FLEX Study Team. Cetuximab plus chemotherapy in patients with advanced non-small-cell lung cancer (FLEX): an open-label randomised phase III trial. Lancet 373: 1525–1531

    Article  PubMed  CAS  Google Scholar 

  131. Geyer CE, Forster J, Lindquist D et al. (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355: 2733–2743

    Article  PubMed  CAS  Google Scholar 

  132. Tol J, Koopman M, Cats A et al. (2009) Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 360: 563–572

    Article  PubMed  CAS  Google Scholar 

  133. Hecht JR, Mitchell E, Chidiac T et al. (2009) A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol 27: 672–680

    Article  PubMed  CAS  Google Scholar 

  134. Blackwell KL, Burstein HJ, Storniolo AM et al. (2010) Randomized study of Lapatinib alone or in combination with trastuzumab in women with ErbB2-positive, trastuzumab-refractory metastatic breast cancer. J Clin Oncol 28: 1124–1130

    Article  PubMed  CAS  Google Scholar 

  135. Baselga J, Gelmon KA, Verma S et al. (2010) Phase II trial of pertuzumab and trastuzumab in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer that progressed during prior trastuzumab therapy. J Clin Oncol 28: 1138–1144

    Article  PubMed  CAS  Google Scholar 

  136. Kummar S, Kinders R, Gutierrez ME et al. (2009Phase 0 clinical trial of the poly (ADP-ribose) polymerase inhibitor ABT-888 in patients with advanced malignancies. J Clin Oncol 27: 2705–2711

    Article  PubMed  CAS  Google Scholar 

  137. Kim ES, Herbst RS, Lee J et al. (2010) The BATTLE trial Biomarker-intergrated Approaches of Targeted Therapy for Lung Cancer Elimination): personnalizing therapy for lung cancer. AACCR, LB-1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag France

About this chapter

Cite this chapter

Beuzeboc, P. (2011). Thérapeutiques ciblées dans le traitement des tumeurs solides. In: Thérapeutique du cancer. Springer, Paris. https://doi.org/10.1007/978-2-8178-0021-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0021-9_5

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0020-2

  • Online ISBN: 978-2-8178-0021-9

Publish with us

Policies and ethics