Skip to main content

Pharmacologie des cytotoxiques antitumoraux

  • Chapter
Thérapeutique du cancer
  • 803 Accesses

Résumé

Une distinction apparaît, de façon très nette, dans la thérapeutique anticancéreuse moderne, entre, les médicaments « classiques » qui sont tous des cytotoxiques, c’est-à-dire qui détruisent les cellules par action sur le noyau cellulaire, et une nouvelle classe de médicaments qui sont des cytostatiques qui vont freiner la croissance cellulaire en bloquant des facteurs de croissance ou des oncogènes. Il existe donc des thérapeutiques ciblées en opposition aux thérapeutiques « conventionnelles », ces nouvelles molécules ciblées font l’objet d’un chapitre spécifique dans ce livre.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Gilman A (1963) The initial clinical trial of nitrogen mustard. Am J Surg 105: 574–578

    Article  PubMed  CAS  Google Scholar 

  2. Chang TK, Weber GF, Crespi CL, Waxman DJ (1993) Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res 53: 5629–5637

    PubMed  CAS  Google Scholar 

  3. Brade WP, Herdrich K, Varini M (1985) Ifosfamide-pharmacology, safety and therapeutic potential. Cancer Treat Rev 12: 1–47

    Article  PubMed  CAS  Google Scholar 

  4. Wagner T, Heydrich D, Jork T et al. (1981) Comparative study on human pharmacokinetics of activated ifosfamide and cyclophosphamide by a modified fluorometric test. J Cancer Res Clin Oncol 100: 95–104

    Article  PubMed  CAS  Google Scholar 

  5. Erickson LC, Bradley MO, Ducore JM et al. (1980) DNA crosslinking and cytotoxicity in normal and transformed human cells treated with antitumor nitrosoureas. Proc Natl Acad Sci 77: 467–471

    Article  PubMed  CAS  Google Scholar 

  6. Lokiec F, Beerblock K, Deloffre P et al. (1989) Étude de pharmacocinétique clinique de la fotémustine dans différents indications tumorales. Bull Cancer 76: 1063–1069

    PubMed  CAS  Google Scholar 

  7. Pendyala L, Creaven PJ (1993) In vitro cytotoxicity, protein binding, red blood cell partitioning, and biotransformation of oxaliplatin. Cancer Res 53: 5970–5976

    PubMed  CAS  Google Scholar 

  8. Fichtinger-Schepman AM, van der Veer JL, den Hartog JH et al. (1985) Adducts of the antitumor drug cis-diamminedichloroplatinum(II) with DNA: formation, identification, and quantitation. Biochemistry 24: 707–713

    Article  PubMed  CAS  Google Scholar 

  9. Eastman A (1986) Reevaluation of interaction of cis-dichloro(ethylenediamine) platinum II with DNA. Biochemistry 25: 3912–3915

    Article  PubMed  CAS  Google Scholar 

  10. Minn AJ, Rudin CM, Boise LH et al. (1995) Expression of bcl-xL can confer a multidrug resistance phenotype. Blood 86: 1903–1910

    PubMed  CAS  Google Scholar 

  11. Miyashita T, Reed JC (1993) Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood 81: 151–157

    PubMed  CAS  Google Scholar 

  12. Zhou BS, Bastow KF, Cheng YC (1989) Characterization of the 3’ region of the human DNA topoisomerase I gene. Cancer Res 49: 3922–3927

    PubMed  CAS  Google Scholar 

  13. Cui Y, Konig J, Buchholz JK et al. (1999) Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Mol Pharmacol 55: 929–937

    PubMed  CAS  Google Scholar 

  14. Ishikawa T, Ali-Osman F (1993) Glutathione-associated cis-diammine dichloroplatinum (II) metabolism and ATP-dependent efflux from leukemia cells. Molecular characterization of glutathione-platinum complex and its biological significance. J Biol Chem 268: 20116–20125

    PubMed  CAS  Google Scholar 

  15. Nishimura T, Newkirk K, Sessions RB et al. (1996) Immunohistochemical staining for glutathione S-transferase predicts response to platinum-based chemotherapy in head and neck cancer. Clin Cancer Res 2: 1859–1865

    PubMed  CAS  Google Scholar 

  16. Surowiak P, Materna V, Kaplenko I et al. (2005) Augmented expression of metallothionein and glutathione S-transferase pi as unfavourable prognostic factors in cisplatin-treated ovarian cancer patients. Virchows Arch 447: 626–633

    Article  PubMed  CAS  Google Scholar 

  17. Dabholkar M, Thornton K, Vionnet J et al. (2000) Increased mRNA levels of xeroderma pigmentosum complementation group B (XPB) and Cockayne’s syndrome complementation group B (CSB) without increased mRNA levels of multidrug-resistance gene (MDR1) or metallothionein-II (MT-II) in platinum-resistant human ovarian cancer tissues. Biochem Pharmacol 60: 1611–1619

    Article  PubMed  CAS  Google Scholar 

  18. Dabholkar M, Vionnet J, Bostick-Bruton F et al. (1994) Messenger RNA levels of XPAC and ERCC1 in ovarian cancer tissue correlate with response to platinum-based chemotherapy. J Clin Invest 94: 703–708

    Article  PubMed  CAS  Google Scholar 

  19. Lieberthal W, Triaca V, Levine J (1996) Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. Am J Physiol 270: F700–F708

    PubMed  CAS  Google Scholar 

  20. Rybak LP, Whitworth CA, Mukherjea D et al. (2007) Mechanisms of cisplatin-induced ototoxicity and prevention. Hear Res 226: 157–167

    Article  PubMed  CAS  Google Scholar 

  21. Malonne H, Atassi G (1997) DNA topoisomerase targeting drugs: mechanisms of action and perspectives. Anti-Cancer Drugs 8: 811–822

    Article  PubMed  CAS  Google Scholar 

  22. Kehrer DFS, Soepenberg O, Loos WJ et al. (2001) Modulation of camptothecin analogs in the treatment of cancer a review. Anti-Cancer Drugs 12: 89–105

    Article  PubMed  CAS  Google Scholar 

  23. Buick RN, Messner HA, Till JE, McCulloch EA (1979) Cytotoxicity of adriamycin and daunorubicin for normal and leukemia progenitor cells of man. J Natl Cancer Inst 62: 249–255

    PubMed  CAS  Google Scholar 

  24. Bhuyan BK, Blowers CL, Crampton SL, Shugars KD (1981) Cell kill kinetics of several nogalamycin analogs and adriamycin for chinese hamster ovary, L1210 leukemia, and melanoma cells in culture. Cancer Res 41: 18–24

    PubMed  CAS  Google Scholar 

  25. Ritch PS, Occhipinti SJ, Skramstad KS, Shackney SE (1982) Increased relative effectiveness of doxorubicin against slowly proliferating sarcoma 180 cells after prolonged drug exposure. Cancer Treat Rep 66: 1159–1168

    PubMed  CAS  Google Scholar 

  26. Mhatre R, Herman E, Huidobro A, Waravdekar V (1971) The possible relationship between metabolism and cardiac toxicity af daunomycin and related compounds. J Pharmacol Exp Ther 178: 216–222

    PubMed  CAS  Google Scholar 

  27. Jaenke RS, Deprez-de-Campeneere D, Trouet A (1980) Cardiotoxicity and comparative pharmacokinetics of six anthracyclines in the rabbit. Cancer Res 40: 3530–3536

    PubMed  CAS  Google Scholar 

  28. Doroshow JH (1983) Effect of anthracycline antibiotics on oxygen radical formation in rat heart. Cancer Res 43: 460–472

    PubMed  CAS  Google Scholar 

  29. Herman EH, Rahman A, Ferrans VJ et al. (1983) Prevention of chronic doxorubicin cardiotoxicity in beagles by liposomal encapsulation. Cancer Res 43: 5427–5432

    PubMed  CAS  Google Scholar 

  30. Caponigro F, Comella P, Budillon A et al. (2000) Phase I study of Caelyx (doxorubicin HCL, pegylated liposomal) in recurrent or metastatic head and neck cancer. Ann Oncol 11: 339–342

    Article  PubMed  CAS  Google Scholar 

  31. Gill PS, Wernz J, Scadden DT et al. (1996) Randomized phase III trial of liposomal daunorubicin versus doxorubicin, bleomycin, and vincristine in AIDS-related Kaposi’s sarcoma. J Clin Oncol 14: 2353–2364

    PubMed  CAS  Google Scholar 

  32. Olson F, Mayhew E, Maslow D et al. (1982) Characterization, toxicity and therapeutic efficacy of adriamycin encapsulated in liposomes. Europ J Clin Oncol 18: 167–176

    Article  CAS  Google Scholar 

  33. Giaccone G, Linn SC, Welink et al. (1997) A dose-finding and pharmacokinetic study of reversal resistance with SDZ PSC 833 in combination with doxorubicin in patients with solid tumors. Clin Cancer Res 3: 2005–2015

    PubMed  CAS  Google Scholar 

  34. Bissett D, Kerr DJ, Cassidy J et al. (1991) Phase I and pharmacokinetic study of D-verapamil and doxorubicin. Br J Cancer 64: 1168–1171

    Article  PubMed  CAS  Google Scholar 

  35. Ozols RF, Cunnion RE, Klecker RW et al. (1987) Verapamil and adriamycin in the treatment of drug-resistant ovarian cancer patients. J Clin Oncol 5: 641–647

    PubMed  CAS  Google Scholar 

  36. Farber S, Diamond LK, Mercer RD et al. (1948) Temporary remission in acute leukemia in children produced by folic acid antagonist, 4 aminopteroyl-glutamic acid (aminopterin). N Engl J Med 238: 787–793

    Article  PubMed  CAS  Google Scholar 

  37. Bleyer WA (1978) The clinical pharmacology of methotrexate. Cancer 41: 36–51

    Article  PubMed  CAS  Google Scholar 

  38. Jolivet J, Cowan KH, Curt GA et al. (1983) The pharmacology and clinical use of methotrexate. Cancer 309: 1094–1104

    CAS  Google Scholar 

  39. Schornagel LH, McVie JG (1983) The clinical pharmacology of methotrexate. Cancer Treat Rev 10: 53–75

    Article  PubMed  CAS  Google Scholar 

  40. Lansiaux A, Lokiec F (2007) Pemetrexed: de la préclinique à la clinique. Bull Cancer 94: 34–38

    Google Scholar 

  41. Goldman ID, Zhao R (2002) Molecular, Biochemical, and cellular pharmacology of pemetrexed. Semin Oncol 29,suppl 18: 3–17

    PubMed  Google Scholar 

  42. Duschinsky R, Pleven E, Heidelberg C (1957) The synthesis of 5-fluoropyrimidines. J Am Chem Soc 79: 4559–4560

    Article  CAS  Google Scholar 

  43. Santini J, Milano G, Thyss A et al. (1989) 5-FU therapeutic monitoring with dose adjustment leads to an improved therapeutic index in head and neck cancer patients. Br J Cancer 59: 287–290

    Article  PubMed  CAS  Google Scholar 

  44. Etienne, MC, Cheradame S, Fischel et al. (1995) Response to fluorouracil therapy in cancer patients: The role of tumoral dihydropyrimidine dehydrogenase activity. J Clin Oncol 13: 1663–1670

    PubMed  CAS  Google Scholar 

  45. Magne N, Etienne-Grimadi MC, Cals L et al. (2007) Dihydropyrimidine dehydrogenase activity and the IVS14+1G>A mutation in patients developing 5FU-related toxicity. Brit J Clin Pharmacol 64: 237–240

    Article  CAS  Google Scholar 

  46. Levêque D, Wihlm J, Jehl F (1996) Pharmacologie des Catharantus alcaloïdes. Bull Cancer 83: 176–186

    Article  PubMed  Google Scholar 

  47. Lokiec F (1995) La pharmacocinétique des taxanes. Sem Hop Paris 71: 687–691

    Google Scholar 

  48. Vaishampayan U, Parchment RE, Jasti BR, Hussain M (1999) Taxanes: An overview of the pharmacokinetics and pharmacodynamics. Urology 54: 22–29

    Article  PubMed  CAS  Google Scholar 

  49. Lavelle F (2002) Nouveaux taxanes et dérivés d’épothilone en cours d’études cliniques. Bull Cancer 89: 343–350

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag France

About this chapter

Cite this chapter

Lokiec, F. (2011). Pharmacologie des cytotoxiques antitumoraux. In: Thérapeutique du cancer. Springer, Paris. https://doi.org/10.1007/978-2-8178-0021-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0021-9_3

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0020-2

  • Online ISBN: 978-2-8178-0021-9

Publish with us

Policies and ethics