Skip to main content

Procédures thérapeutiques particulières

  • Chapter
Précis d’hématologie et d’oncologie

Résumé

Les cellules souches hématopoïétiques sont une petite population essentiellement dormante de cellules indifférenciées. Elles sont caractérisées par leur capacité d’auto-renouvellement par division cellulaire continue et de différentiation en cellules lymphoïdes, myéloïdes, éry-throïdes ou mégacaryocytaires (▸ Chap. 1.3). Les cellules souches hématopoïétiques, provenant de sources autologues ou allogéniques, greffées après une radiothérapie (irradiation corporelle totale) et/ou une chimiothérapie à haute dose sont sujettes à une prolifération et à une différentiation intense chez le receveur. La nature précise des cellules à l’origine de la récupération fonctionnelle médullaire à court et à long termes après une greffe n’est pas claire, néanmoins, les cellules souches sont responsables du maintien d’une hématopoïèse continue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Oakley EJ, Vant Zant G. Unraveling the complex regulation of stem cells: implications for aging and cancer. Leukemia 2007;21:612–621

    PubMed  CAS  Google Scholar 

  2. Papayannapoulou T. Current mechanistic scenarios in hematopoietic stem/progenitor cell mobilization. Blood 2004;103:1580–1585

    Article  Google Scholar 

  3. Rocha V, Labopin M, Sanz G et al. Transplants of umbilical cord blood or bone marrow from unrelated donors in adults with acute leukemia. N Engl J Med 2004;351:2276–2285

    Article  PubMed  CAS  Google Scholar 

  4. Sauvageau G, Iscove NN, Humphries RK. In vitro and in vivo expansion of hematopoietic stem cells. Oncogene 2004;23:7223–7232

    Article  PubMed  CAS  Google Scholar 

  5. Siena S, Schiavo R, Pedrazzoli P et al. Therapeutic relevance of CD34+ cell dose in blood cell transplantation for cancer therapy. J Clin Oncol 2000;18:1360–1377

    PubMed  CAS  Google Scholar 

  6. Sorrentino BP. Clinical strategies for expansion of haematopoietic stem cells. Nat Rev Immu-nol 2004;4:878–888

    Article  CAS  Google Scholar 

  7. Weissman IL. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 2000;287:1442–1446

    Article  PubMed  CAS  Google Scholar 

Réf.

  1. Antin JH. Long-term care after hematopoietic cell transplantation in adults. N Engl J Med 2002;347:36–42

    Article  PubMed  Google Scholar 

  2. Devetten M, Armitage JO. Hematopoietic cell transplantation: progress and obstacles. Ann Oncol 2007;18:1450–1456

    Article  PubMed  CAS  Google Scholar 

  3. Gratwohl A, Baldomero H, Frauendorfer K et al. EBMT activity survey 2004 and changes in disease indication over the past 15 years. Bone Marrow Transpl 2006;37:1069–1085

    Article  CAS  Google Scholar 

  4. Jansen J, Hanks S, Thompson JM et al. Transplantation of hematopoietic stem cells from the peripheral blood. J Cell Mol Med 2005;9:37–50

    Article  PubMed  Google Scholar 

  5. Kessinger A, Sharp JG. The whys and hows of haematopoietic progenitor and stem cell mobilization. Bone Marrow Transpl 2003;31:319–329

    Article  CAS  Google Scholar 

  6. Majhail NS, Ness KK, Burns LJ et al. Late effects in survivors of Hodgkin’s and Non-Hodkin’s lymphoma treated with autologous hematopoietic cell transplantation. Biol Blood Marrow Transpl 2007;13:l–7

    Google Scholar 

Réf.

  1. Appelbaum FR. Dose intensity and the toxicity and efficacy of allogeneic hematopoietic cell transplantation. Leukemia 2005;19:171–175

    Article  PubMed  CAS  Google Scholar 

  2. Bertz H, Potthoff K, Finke J. Allogeneic stem-cell transplantation from related and unrelated donors in older patients with myeloid leukemia. J Clin Oncol 2003:21:1480–1484

    Article  PubMed  Google Scholar 

  3. Butcher BW, Collins RH. The graft-versus-lymphoma-effect: clinical review and future opportunities. Bone Marrow Transplant 2005;36:l–17

    Article  Google Scholar 

  4. Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med 2006;354:1813–1826

    Article  PubMed  CAS  Google Scholar 

  5. Deeg HJ. How I treat refractory acute GVHD. Blood 2007;109:4119–4126

    Article  PubMed  CAS  Google Scholar 

  6. Grathwohl A, Baldomero H, Frauendorfer K et al. Results of the EBMT activity survey 2005 on haematopoietic stem cell transplantation: focus on increasing use of unrelated donors. Bone Marrow Transplant 2007;39:71–87

    Article  Google Scholar 

  7. Schoemans H, Theunissen K, Maertens J et al. Adult umbilical cord blood transplantation. Bone Marrow Transplant 2006;38:83–93

    Article  PubMed  CAS  Google Scholar 

Réf.

  1. Hübel K, Engert A. Granulocyte transfusion therapy for treatment of infections after cytotoxic chemotherapy. Onkologie 2003;26:73–79

    Article  PubMed  Google Scholar 

  2. Mousset S, Hermann S, Klein SA et al. Prophylactic and interventional granulocyte transfusion in patients with haematological malignancies and life-threatening infections during neutropenia. Ann Hematol 2005;84:234–241

    Article  Google Scholar 

  3. Price TH. Granulocyte transfusion: current status. Semin Hematol 2007;44:15–23

    Article  PubMed  Google Scholar 

  4. Robinson SP, Marks DI. Granulocyte transfusions in the G-CSF era. Where do we stand? Bone Marrow Transplant 2004;34:839–846

    Article  PubMed  CAS  Google Scholar 

Réf.

  1. Banchereau J, Palucka A. Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 2005;5:296–306

    Article  PubMed  CAS  Google Scholar 

  2. Blattmann JN, Greenberg PD. Cancer immunotherapy: a treatment for the masses. Science 2004;305:200–205

    Article  Google Scholar 

  3. Brentjens RJ, LAtouche JB, Santos E et al. E radication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med 2003;9:279–286

    Article  PubMed  CAS  Google Scholar 

  4. Lake RA, Robinson BW. Immunotherapy and chemotherapy: a practical partnership. Nat Rev Cancer 2005;5:397–405

    Article  PubMed  CAS  Google Scholar 

  5. Mapara MY, Sykes M. Tolerance and cancer: mechanisms of tumor evasion and strategies for breaking tolerance. J Clin Oncol 2004;22:1136–1151

    Article  PubMed  CAS  Google Scholar 

  6. Ribas A, Butterfiled LH, Glaspy JA et al. Current developments in cancer vaccines and cellular immunotherapy. J Clin Oncol 2003;21:2415–2432

    Article  PubMed  CAS  Google Scholar 

  7. Steinmann RM, Banchereau J. Taking dendritic cells into medicine. Nature 2007;449:419–426

    Article  Google Scholar 

Réf.

  1. Baum C, Düllmann J, Li Z et al. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 2003;101:2099–2114

    Article  PubMed  CAS  Google Scholar 

  2. Eder IE, Haag P, Bartsch G et al. Gene therapy strategies in prostate cancer. Curr Gene Ther 2005;5:l–10

    Article  Google Scholar 

  3. Lusky M. Good manufacturing practice production of adenoviral vectors for clinical trials. Hum Gene Ther 2005;16:281–291

    Article  PubMed  CAS  Google Scholar 

  4. Manilla P, Rebello T, Afable C et al. Regulatory considerations for novel gene therapy products: a review of the process leading to the first clinical lentiviral vector. Hum Gene Ther 2005;16:17–25

    Article  PubMed  CAS  Google Scholar 

  5. Nathawani AC, Davidoff AM, Linch DC. A review of gene therapy for haematological disorders. Br J Hae-matol 2005;128:3–17

    Article  Google Scholar 

  6. Neff T, Beard BC, Kiem HP et al. Survival of the fittest: in vivo selection and stem cell gene therapy. Blood 2006;107:1751–1760

    Article  PubMed  CAS  Google Scholar 

Réf.

  1. Carmeliet P. Angiogenesis in health and disease. Nature Med 2003;6:653–660

    Article  Google Scholar 

  2. Fayette J, Soria JC, Armand JP et al. Use of angiogenesis inhibitors in tumour treatment. Eur J Cancer 2005;41:1109–1116

    Article  PubMed  CAS  Google Scholar 

  3. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nature Med 2003;9:669–676

    Article  PubMed  CAS  Google Scholar 

  4. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002;6(suppl 16):15–18

    Google Scholar 

  5. Keyhani A, Jendiroba DB, Freireich EJ. Angiogenesis and leukemia. Leuk Res 2001;25:639–645

    Article  PubMed  CAS  Google Scholar 

  6. Podar K, Anderson KC. The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications. Blood 2005;105:1383–1395

    Article  PubMed  CAS  Google Scholar 

  7. Timar J, Dome B, Fazekas K et al. Angiogenesis-dependent diseases and angiogenesis therapy. Pathol Oncol Res 2001;7:85–94

    Article  PubMed  CAS  Google Scholar 

  8. Tozer GM, Kanthou C, Baguley BC. Disrupting tumour blood vessels. Nat Rev Cancer 2005;5:423–435

    Article  PubMed  CAS  Google Scholar 

Réf.

  1. Bhalla KN. Heat shock protein 90 modulators in hematologi neoplasms. ASCO Educational Book 42nd Annual Meeting, 2006, pp 141–146

    Google Scholar 

  2. Buckingham S. The major world of microRNAs. Horizon Symposia. Understanding the RNAissance. May 2003. Nature Publishing Group

    Google Scholar 

  3. Carter TA et al. Inhibition of drug resistant mutants of Abl, Kit, and EGF receptor kinases. Proc Natl Acad Sci 2005;102:11011–11016

    Article  PubMed  CAS  Google Scholar 

  4. Dorsett Y, Tuschl T. siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 2004;3:318–329

    Article  PubMed  CAS  Google Scholar 

  5. Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer 2006;6:259–269

    Article  PubMed  CAS  Google Scholar 

  6. Keen N, Taylor S. Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer 2004;4:927–936

    Article  PubMed  CAS  Google Scholar 

  7. Kelland LR. Overcoming the immortality of tumour cells by telomere and telomerase based cancer therapeutics: current status and future prospects. Eur J Cancer 2005;41:971–979

    Article  PubMed  CAS  Google Scholar 

  8. Krutzfeldt J et al. Silencing of microRNAs in vivo with “antagomirs”. Nature 2005;438:685–689

    Article  PubMed  Google Scholar 

  9. Shay JW, Wright WE. Telomerase therapeutics for cancer: challenges and new directions. Nat Rev Drug Discov 2006;5:577–584

    Article  PubMed  CAS  Google Scholar 

  10. Solit DB. Heat shock protein 90 as therapeutic target in solid tumors. ASCO Educational Book 42nd Annual Meeting, 2006, pp 136–140

    Google Scholar 

  11. Stevenson M. Therapeutic potential of RNA interference. New Engl J Med 2004;351:1772–1777

    Article  PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Deschler, B. et al. (2011). Procédures thérapeutiques particulières. In: Précis d’hématologie et d’oncologie. Springer, Paris. https://doi.org/10.1007/978-2-287-99342-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-99342-8_5

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-99341-1

  • Online ISBN: 978-2-287-99342-8

Publish with us

Policies and ethics