Skip to main content

Lactate: métabolisme et physiopathologie

  • Chapter
Désordres métaboliques et réanimation

Part of the book series: Le point sur ... ((POINT))

  • 1061 Accesses

Résumé

Comprendre la physiopathologie d’une hyperlactatémie passe par une connaissance étroite de son métabolisme. Le métabolisme du lactate est complexe, dépendant des différents organes et de leur condition énergétique. L’hyperlactatémie est depuis longtemps liée à la notion de déchet métabolique toxique, d’acidose lactique et d’hypoxie tissulaire. Toutes ces associations profondément ancrées dans nos esprits sont le plus souvent erronées. L’hyperlactatémie reste un bon signal d’alarme de crise énergétique, mais elle est aussi le témoin d’une adaptation métabolique. Dans certaines situations physiologiques et pathologiques, le lactate est un réel substrat énergétique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. De Backer D (2003) Lactic acidosis. Intensive Care Med 29: 699–702

    PubMed  Google Scholar 

  2. Leverve X, Fontaine E, Péronnet F (1996) Métabolisme énergétique. Encycl Med Chir (Elsevier, Paris) 10-371-A-10: 12p

    Google Scholar 

  3. Gladden LB (2004) Lactate metabolism: a new paradigm for the third millenium. J Physiol 558: 5–30

    Article  PubMed  CAS  Google Scholar 

  4. Leverve X (1999) Lactic acidosis A new insight. Minerva Anesthesiol 65: 205–9

    CAS  Google Scholar 

  5. Leverve XM, Mustafa I, Péronnet F (1998) Pivotal role of lactate in aerobic metabolism. In: Vincent JL, ed. Yearbook of Intensive Care and Emergency Medicine. Berlin, Springer-Verlag: 588–96

    Google Scholar 

  6. Chioléro R, Tappy L, Gillet M et al. (1999) Effect of a major hepatectomy on glucose and lactate metabolism. Ann Surg 4: 505–13

    Article  Google Scholar 

  7. Joseph SE, Heaton N, Potter D, Pernet A, Umpleby MA, Amiel SA (2000) Renal glucose production compensates for the liver during the anhepatic phase of liver transplantation. Diabetes 49: 450–6

    Article  PubMed  CAS  Google Scholar 

  8. Leverve XM (1999) From tissue perfusion to metabolic marker: assessing organ competition and co-operation in critically ill patients. Intensive Care Med 25: 890–2

    Article  PubMed  CAS  Google Scholar 

  9. Schurr A, Payne RS, Miller JJ, Rigor BM (1997) Brain lactate is an obligatory aerobic energy substrate for functional recovery after hypoxia: further in vitro validation. J Neurochem 69: 423–6

    Article  PubMed  CAS  Google Scholar 

  10. Nichol AD, Egi M, Pettila V et al. (2010) Relative hyperlactatemia and hospital mortality in critically ill patients: a retrospective multi-centre study. Crit Care 14: R25

    Article  PubMed  Google Scholar 

  11. Jansen TC, Van Bommel J, Woodward R, Mulder PG, Bakker J (2009) Association between blood lactate levels, Sequential Organ Failure Assessment subscores, and 28-day mortality during early and late intensive care unit stay: a retrospective observational study. Crit Care Med 37: 2369–74

    Article  PubMed  CAS  Google Scholar 

  12. Khosravani H, Shahpori R, Stelfox T, Kirkpatrick AW, Laupland KB (2009) Occurrence and adverse effect on outcome of hyperlactatemia in the critically ill. Crit Care 13: R90

    Article  PubMed  Google Scholar 

  13. Marecaux G, Pinsky MR, Dupont E et al. (1996) Blood lactate levels are better prognostic indicators than TNF and IL-6 levels in patients with septic shock. Intensive Care Med 22: 404–8

    Article  PubMed  CAS  Google Scholar 

  14. Mikelsen ME, Miltiades AN, Gaieski DF et al. (2009) Serum lactate is associated with mortality in severe sepsis independent of organ failure and shock. Crit Care Med 37: 1670–7

    Article  Google Scholar 

  15. Cerovic O, Golubovic V, Spec-Mam A, Kremzar B, Vidmar G (2003) Relationship between injury severity and lactate levels in severely injured patients. Intensive Care Med 29: 1300–5

    Article  PubMed  Google Scholar 

  16. Kaplan LJ, Kellum JA (2004) Initial pH, base deficit, anion gap, strong ion difference, and strong ion gap predict outcome from major vascular surgery. Crit Care Med 32: 1120–4

    Article  PubMed  CAS  Google Scholar 

  17. Maillet JM, Le Besnerais P, Cantoni M et al. (2003) Frequency, risk factors, and outcome of hyperlactatemia after cardiac surgery. Chest 123: 1361–6

    Article  PubMed  Google Scholar 

  18. Husain FA, Martin MJ, Mullenix PS, Steele SR, Elliott DC (2003) Serum lactate and base-deficit as predictors of mortality and morbidity. Am J Surg 185: 485–91

    Article  PubMed  Google Scholar 

  19. Levraut J, Ichai C, Petit I, Ciebiera JP, Perus O, Grimaud D (2003) Low exogenous lactate clearance as an early predictor of mortality in normolactatemic critically ill patients. Crit Care Med 31: 705–10

    Article  PubMed  CAS  Google Scholar 

  20. Arnold RC, Shapiro NI, Jones AE et al. (2009) Multicenter study of early lactate clearance as a determinant of survival in patients with presumed sepsis. Shock 32: 35–9

    Article  PubMed  CAS  Google Scholar 

  21. Dellinger RP, Levy MM, Carlet JM et al. (2008) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 36: 296–327

    Article  PubMed  Google Scholar 

  22. Wutrich Y, Barraud D, Conrad M et al. (2009) Early increase in arterial lactate concentration under epinephrine infusion is associated with a better prognosis during shock. Shock 34: 4–9

    Google Scholar 

  23. Brooks GA. Lactate shuttles in nature (2002) Biochem Soc Trans 30: 258–64

    Article  PubMed  CAS  Google Scholar 

  24. Levraut J, Ciebiera JP, Chave S et al. (1998) Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J Resp Crit Care Med 157: 1021–6

    PubMed  CAS  Google Scholar 

  25. Cohen RD, Woods HF (1976) Clinical and biochemical aspects of lactic acidosis. Blackwell ed. London.

    Google Scholar 

  26. Levy B, Sadoune LO, Gelot AM, Bollaert PE, Nabet P, Larcan A (2000) Evolution of lactate/pyruvate and arterial ketone body ratios in the early course of catecholamine-treated septic shock. Crit Care Med 28: 114–9

    Article  PubMed  CAS  Google Scholar 

  27. Leverve XM (1999) Energy metabolism in critically ill patients: lactate is a major oxidizable substrate. Curr Opin Clin Nutr Metab Care 2: 165–9

    Article  PubMed  CAS  Google Scholar 

  28. James JH, Luchette FA, McCarter FD, Fischer JE (1999) Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 354: 505–8

    Article  PubMed  CAS  Google Scholar 

  29. Gore D, Jahoor F, Hibbert J, DeMaria E (1996) Lactic acidosis during sepsis is related to increased pyruvate production, not deficits in tissue oxygen availability. Ann Surg 224: 97–102

    Article  PubMed  CAS  Google Scholar 

  30. Boekstegers P, Weidenhöfer S, Kaspner D, Werdan K (1994) Skeletal muscle partial pressure of oxygen in patients with sepsis. Crit Care Med 22: 640–50

    Article  PubMed  CAS  Google Scholar 

  31. Stacpoole PW, Lorenz AC, Thomas RG, Harman EM (1998) Dichloroacetate in the treatment of lactic acidosis. Ann Intern Med 108: 58–63

    Google Scholar 

  32. Vary TC (1996) Sepsis-induced alterations in pyruvate deshydrogenase complex activity in rat skeletal muscle: effects on plasma lactate. Shock 6: 89–94

    Article  PubMed  CAS  Google Scholar 

  33. Routsi C, Bardouniotou H, Delivoria-Ioannidou V, Kazi D, Roussos C, Zakynthinos S (1999) Pulmonary lactate release in patients with acute lung injury is not attributable to lung tissue hypoxia. Crit Care Med 27: 2469–7

    Article  PubMed  CAS  Google Scholar 

  34. Saks V, Dos Santos P, Gellerich FN, Diolez P (1998) Quantitative studies of enzyme-substrate compartmentation, functional coupling and metabolic channeling in muscle cells. Mol Cell Biochem 184: 291–307

    Article  PubMed  CAS  Google Scholar 

  35. Luchette FA, Friend LA, Brown CC, Upputori RK, James JH (1998) Increased skeletal muscle Na+, K+-ATPase activity as a cause of increased lactate production after hemorrhagic shock. J Trauma 44: 796–803

    Article  PubMed  CAS  Google Scholar 

  36. James JH, Fang CH, Schranz SJ, Hausselgren PO, Paul RJ, Fischer JE (1996) Linkage of aerobic glycolysis to sodium-potassium transport in rat skeletal muscle. Implications for increased muscle lactate production in sepsis. J Clin Invest 98: 2288–97

    Article  Google Scholar 

  37. Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE (2005) Relation between muscle Na+−K+-ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet 365: 871–5

    Article  PubMed  CAS  Google Scholar 

  38. Oudard S, Boitier E, Miccoli M, Rousset S, Dutrillaux B, Poupon MF (1997) Gliomas are driven by glycolysis putative roles of hexokinase, oxidative phosphorylation and mitochondrial ultrastructure. Anticancer Res 17: 1903–11

    PubMed  CAS  Google Scholar 

  39. Chen J, Gollnick PD (1994) Effect of exercise on hexokinase distribution and mitochondrial respiration in skelatal muscle. Pflügers Arch 427: 257–63

    Article  PubMed  CAS  Google Scholar 

  40. Stewart PA (1978) Independent and dependent variables of acid-base control. Resp Physiol 33: 9–26

    Article  CAS  Google Scholar 

  41. Quintard H, Hubert S, Ichai C (2007) Qu’apporte le modèle de Stewart à l’interprétation des troubles acidobasiques? Ann Fr Anesth Réanim 26: 423–33

    Article  PubMed  CAS  Google Scholar 

  42. Ichai C, Massa H, Hubert S (2006) Troubles de l’équilibre acidobasique chez l’adulte. Encycl Med Chir (Paris-France). Anesthésie-Réanimation, 36-860-A-50: 17 p

    Google Scholar 

  43. Mustafa I, Leverve XM (2002) Metabolic and hemodynamic effects of hypertonic solutions: sodium-lactate versus sodium chloride infusion in postoperative patients. Shock 18: 306–10

    Article  PubMed  Google Scholar 

  44. Ichai C, Armando G, Orban JC et al. (2009) Sodium-Lactate vs mannitol in the treatment of intracranial hypertensive episodes in severe traumatic brain-injured patients. Intensive Care Med 35: 471–9

    Article  PubMed  CAS  Google Scholar 

  45. Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85: 1093–129

    Article  PubMed  CAS  Google Scholar 

  46. Ichai C, Leverve X, Orban JC (2008) Lactate and acute heart failure syndrome. In: Mebazaa A, Gheorghiade M, Zannad FM, Parrillo JE, eds. Acute heart failure. London, Spinger-Verlag: p 768–80

    Chapter  Google Scholar 

  47. Levy B, Mansart A, Montenmont C, Gibot S, Mallie JP, Lacolley P (2007) Myocardial lactate deprivation is associated with decreased cardiovascular performance, decreased myocardial energetics and early death in endotoxic shock. Intensive Care Med 33: 495–505

    Article  PubMed  CAS  Google Scholar 

  48. Leverve XM, Boon C, Hakim T, Anwar M, Siregar E, Mustafa I (2008) Half-molar sodium-lactate solution has a beneficial effect in patients after coronary artery bypass grafting. Intensive Care Med 34: 1796–1803

    Article  PubMed  CAS  Google Scholar 

  49. Pellerin L, Pellegri G, Bittar PG et al. (1998) Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci 120: 291–9

    Article  Google Scholar 

  50. Pellerin L, Pellegri G, Martin JL, Magistretti PJ (1998) Expression of monocarboxylate transporter mRNA in mouse brain: support for a distinct role of lactate as an energy substrate for the neonatal vs adulte brain. Proc Natl Acad Sci USA 95: 3990–5

    Article  PubMed  CAS  Google Scholar 

  51. Schurr A, Payne RS, Miller JJ, Rigor BM (1999) An increase in lactate output by brain tissue serves to meet the energy needs of glutamate-activated neurons. J Neurosci 19: 34–9

    PubMed  CAS  Google Scholar 

  52. Schurr A, Rigor BM (1998) Brain anaerobic lactate production: a suicide note or a survival kit? Dev Neurosci 20: 348–57

    Article  PubMed  CAS  Google Scholar 

  53. Schurr A, Payne RS, Miller JJ, Tseng MT, Rigor BM (2001) Blockade of lactate transport exacerbates delated neuronal damage in a rat model of cerebral ischemia. Brain Res 895: 268–72

    Article  PubMed  CAS  Google Scholar 

  54. Rice AC, Zsoldos R, Chen T et al. (2002) Lactate administration attenuates cognitive deficits following traumatic brain injury. Brain Res 928:156–9

    Article  PubMed  CAS  Google Scholar 

  55. Holloway R, Zhou Z, Harvey HB et al. (2007) Effect of lactate therapy upon cognitive deficits after traumatic brain injury in the rat. Acta Neurochir (Wien) 149: 919–27

    Article  CAS  Google Scholar 

  56. Maran A, Cranston I, Lomas J, Macdonald I, Amiel SA (1994) Protection by lactate of cerebral function during hypoglycaemia. Lancet 343: 16–20

    Article  PubMed  CAS  Google Scholar 

  57. King P, Kong MF, Parkin H, MacDonald IA, Barber C, Tattersall RB (1998) Ontravenous lactate prevents cerebral dysfunction during hypoglycaemia in insulin-dependent diabetes mellitus. Clin Sci (Lond) 94: 157–63

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag France

About this chapter

Cite this chapter

Orban, JC., Ichai, C., Leverve, X. (2011). Lactate: métabolisme et physiopathologie. In: Désordres métaboliques et réanimation. Le point sur .... Springer, Paris. https://doi.org/10.1007/978-2-287-99027-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-99027-4_8

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-99026-7

  • Online ISBN: 978-2-287-99027-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics