Skip to main content

Dysfonctions métaboliques et sepsis

  • Chapter
  • 950 Accesses

Part of the book series: Le point sur ... ((POINT))

Résumé

Malgré les progrès récents réalisés dans le domaine et la campagne de survie pour le sepsis, le choc septique reste grevé d’une mortalité élevée. Le choc septique est un choc dit « distributif », qui, comme tous les autres types d’états de choc, s’accompagne d’une dysfonction métabolique. Néanmoins, et ce contrairement aux autres types d’état de choc, le débit cardiaque est habituellement élevé (état hyperkinétique) mais la répartition du débit sanguin entres les différents tissus (altérations des circulations régionales) et au sein même de ceux-ci (dysfonction microcirculatoire) rend parfois la perfusion de certaines unités métaboliques insuffisante pour assurer leur besoins de base. De plus, la fonction cellulaire peut également être altérée même lorsque la perfusion est adéquate. Ceci résulte en une dysfonction métabolique généralisée mais d’incidence et de sévérité variables, qui participe á la dysfonction organique, multiorganique et, partant, au décès du patient.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. LeDoux D, Astiz ME, Carpati CM et al. (2000) Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med 28: 2729–32

    Article  PubMed  CAS  Google Scholar 

  2. Bourgoin, A, Leone, M, Delmas, A et al. (2005) Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit Care Med. 33: 780–6

    Article  PubMed  CAS  Google Scholar 

  3. Deruddre S, Cheisson G, Mazoit JX et al. (2007). Renal arterial resistance in septic shock: effects of increasing mean arterial pressure with norepinephrine on the renal resistive index assessed with Doppler ultrasonography. Intensive Care Med 33: 1557–62

    Article  PubMed  Google Scholar 

  4. Dubin A, Pozo MO, Casabella CA et al. (2009). Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care 13: R92

    Google Scholar 

  5. Vieillard-Baron A, Caille V, Charron C et al. (2008). Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med 36: 1701–6

    Article  PubMed  Google Scholar 

  6. Lancel S, Joulin O, Favory R et al. (2005) Ventricular myocyte caspases are directly responsible for endotoxin-induced cardiac dysfunction. Circulation 111: 2596–604

    Article  PubMed  CAS  Google Scholar 

  7. Rivers E, Nguyen B, Havstad S et al. (2001). Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345: 1368–77

    Article  PubMed  CAS  Google Scholar 

  8. Morelli A, De Castro S, Teboul JL et al. (2005) Effects of levosimendan on systemic and regional hemodynamics in septic myocardial depression. Intensive Care Med 31: 638–44

    Article  PubMed  Google Scholar 

  9. Cunnion RE, Schaer GL, Parker MM et al. (1986) The coronary circulation in human septic shock. Circulation 73: 637–44

    Article  PubMed  CAS  Google Scholar 

  10. Dhainaut JF, Huyghebaert MF, Monsallier JF et al. (1987) Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 75: 533–41

    Article  PubMed  CAS  Google Scholar 

  11. Groeneveld AB, van Lambalgen AA, van den Bos GC et al. (1991) Maldistribution of heterogeneous coronary blood flow during canine endotoxin shock. Cardiovasc Res 25: 80–8

    Article  PubMed  CAS  Google Scholar 

  12. Wang SY, Cameron EM, Fink MP et al. (1997) Chronic septicemia alters alpha-adrenergic mechanisms in the coronary circulation. J Surg Res 69: 61–6

    Article  PubMed  CAS  Google Scholar 

  13. Hohlfeld T, Klemm P, Thiemermann C et al. (1995) The contribution of tumour necrosis factor-alpha and endothelin-1 to the increase of coronary resistance in hearts from rats treated with endotoxin. Br J Pharmacol 116: 3309–15

    PubMed  CAS  Google Scholar 

  14. Mitchell JA, Gray P, Anning PD et al. (2000) Effects of nitric oxide-modulating amino acids on coronary vessels: relevance to sepsis. Eur J Pharmacol 389: 209–15

    Article  PubMed  CAS  Google Scholar 

  15. Bogle RG, McLean PG, Ahluwalia A et al. (2000) Impaired vascular sensitivity to nitric oxide in the coronary microvasculature after endotoxaemia. Br J Pharmacol 130: 118–24

    Article  PubMed  CAS  Google Scholar 

  16. Piepot HA, Boer C, Groeneveld AB et al. (2000) Lipopolysaccharide impairs endothelial nitric oxide synthesis in rat renal arteries. Kidney Int 57: 2502–10

    Article  PubMed  CAS  Google Scholar 

  17. Suzuki Y, Deitch EA, Mishima S et al. (2000) Endotoxin-induced mesenteric microvascular changes involve iNOS-derived nitric oxide: results from a study using iNOS knock out mice. Shock 13: 397–403

    Article  PubMed  CAS  Google Scholar 

  18. De Backer D, Zhang H, Manikis P et al. (1996) Regional effects of dobutamine in endotoxic shock. J Surg Res 65: 93–100

    Article  PubMed  Google Scholar 

  19. De Backer D, Zhang H, Cherkhaoui S et al. (2001) Effects of dobutamine on hepato-splanchnic hemodynamics in an experimental model of hyperdynamic endotoxic shock. Shock 15: 208–14

    Article  PubMed  Google Scholar 

  20. De Backer D, Creteur J, Noordally O et al. (1998) Does hepato-splanchnic VO2/DO2 dependency exist in critically ill septic patients? Am J Respir Crit Care Med 157: 1219–25

    PubMed  Google Scholar 

  21. Meier-Hellmann A, Hannemann L, Specht M, Schaffartzik W, Spies C, Reinhart K (1994) The relationship between mixed venous and hepatic venous O2 saturation in patients with septic shock. Adv Exp Med Biol 345: 701–7

    Article  PubMed  CAS  Google Scholar 

  22. De Backer D, Creteur J, Silva E et al. (2001) The hepatosplanchnic area is not a common source of lactate in patients with severe sepsis. Crit Care Med 29: 256–61

    Article  PubMed  Google Scholar 

  23. Creteur J, De Backer D, Sun Q, Vincent JL (2004) The hepatosplanchnic contribution to hyperlactatemia in endotoxic shock: effects of tissue ischemia. Shock 21:438-43

    Google Scholar 

  24. Schwartz D, Mendonca M, Schwartz I et al. (1997) Inhibition of constitutive nitric oxide synthase (NOS) by nitric oxide generated by inducible NOS after lipopolysaccharide administration provokes renal dysfunction in rats. J Clin Invest 100: 439–48

    Article  PubMed  CAS  Google Scholar 

  25. Pastor CM (1999) Vascular hyporesponsiveness of the renal circulation during endotoxemia in anesthetized pigs. Crit Care Med 27: 2735–40

    Article  PubMed  CAS  Google Scholar 

  26. Albanese J, Leone M, Garnier F, Bourgoin A, Antonini F, Martin C (2004) Renal effects of norepinephrine in septic and nonseptic patients. Chest 126: 534–9

    Article  PubMed  CAS  Google Scholar 

  27. Esteban A, Anzueto A, Frutos F et al. (2002) Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA 287: 345–55

    Article  PubMed  Google Scholar 

  28. Gordon AC, Russell JA, Walley KR et al. (2010) The effects of vasopressin on acute kidney injury in septic shock. Intensive Care Med 36: 83–91

    Article  PubMed  CAS  Google Scholar 

  29. Sharshar T, Gray F, Lorin DLG et al. (2003) Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet 362: 1799–805

    Article  PubMed  CAS  Google Scholar 

  30. Tzelepis G, Kadas V, Michalopoulos A, Geroulanos S (1996) Comparison of gastric air tonometry with standard saline tonometry. Intensive Care Med 22: 1239–43

    Article  PubMed  CAS  Google Scholar 

  31. Marechal X, Favory R, Joulin O et al. (2008) Endothelial glycocalyx damage during endotoxemia coincides with microcirculatory dysfunction and vascular oxidative stress. Shock 29: 572–6

    PubMed  CAS  Google Scholar 

  32. Cabrales P, Vazquez BY, Tsai AG, Intaglietta M (2007) Microvascular and capillary perfusion following glycocalyx degradation. J Appl Physiol 102: 2251–9

    Article  PubMed  Google Scholar 

  33. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166: 98–104

    Article  PubMed  Google Scholar 

  34. Spronk PE, Ince C, Gardien MJ, Mathura KR, Oudemans-van Straaten HM, Zandstra DF (2002) Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet 360: 1395–6

    Article  PubMed  Google Scholar 

  35. Trzeciak S, Dellinger RP, Parrillo JE et al. (2007) Early Microcirculatory Perfusion Derangements in Patients With Severe Sepsis and Septic Shock: Relationship to Hemodynamics, Oxygen Transport, and Survival. Ann Emerg Med 49: 88–98

    Article  PubMed  Google Scholar 

  36. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL (2004) Persistant microvasculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32: 1825–31

    Article  PubMed  Google Scholar 

  37. Trzeciak S, McCoy JV, Phillip DR et al. (2008) Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med 34: 2210–7

    Article  PubMed  Google Scholar 

  38. Kubli S, Boegli Y, Ave AD et al. (2003) Endothelium-dependent vasodilation in the skin microcirculation of patients with septic shock. Shock 19: 274–80

    Article  PubMed  Google Scholar 

  39. De Backer D, Creteur J, Dubois MJ et al. (2006) The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med 34: 403–8

    Article  PubMed  Google Scholar 

  40. De Backer D, Verdant C, Chierego M, Koch M, Gullo A, Vincent JL (2006) Effects of Drotecogin Alfa Activated on microcirculatory alterations in patients with severe sepsis. Crit Care Med 34: 1918–24

    Article  PubMed  Google Scholar 

  41. Buchele GL, Silva E, Ospina-Tascon G, Vincent JL, De Backer D (2009) Effects of hydrocortisone on microcirculatory alterations in patients with septic shock. Crit Care Med 37: 1341–7

    Article  PubMed  Google Scholar 

  42. De Backer D, Ospina-Tascon G, Salgado D, Favory R, Creteur J, Vincent JL (2010) Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med 36: 1813–25

    Article  PubMed  Google Scholar 

  43. Vetterlein F, Prange M, Lubrich D, Pedina J, Neckel M, Schmidt G (1995) Capillary perfusion pattern and microvascular geometry in heterogeneous hypoxic areas of hypoperfused rat myocardium. Am J Physiol 268: H2183-H2194

    Google Scholar 

  44. Ince C, Ashruf JF, Avontuur JA, Wieringa PA, Spaan JA, Bruining HA (1993) Heterogeneity of the hypoxic state in rat heart is determined at capillary level. Am J Physiol 264: H294-H301

    Google Scholar 

  45. Shepherd AP, Kiel JW (1992) A model of countercurrent shunting of oxygen in the intestinal villus. Am J Physiol 262: H1136-H1142

    Google Scholar 

  46. Van Lambalgen AA, Van Kraats AA, Van den Bos GC et al. (1991) Renal function and metabolism during endotoxemia in rats: role of hypoperfusion. Circ Shock 35: 164–73

    PubMed  Google Scholar 

  47. Taccone FS, Su F, Pierrakos C et al. (2010) Cerebral microcirculation is impaired during sepsis: an experimental study. Crit Care 14: R140

    Google Scholar 

  48. Goldman D, Bateman RM, Ellis CG (2004) Effect of sepsis on skeletal muscle oxygen consumption and tissue oxygenation: interpreting capillary oxygen transport data using a mathematical model. Am J Physiol Heart Circ Physiol 287: H2535-H2544

    Google Scholar 

  49. Nelson DP, Beyer C, Samsel RW, Wood LDH, Schumacker PT (1987) Pathological supply dependence of O2 uptake during bacteremia in dogs. J Appl Physiol 63: 1487–92

    PubMed  CAS  Google Scholar 

  50. Zhang H, Rogiers P, De Backer D et al. (1996) Regional arteriovenous differences in PCO2 and pH can reflect critical organ oxygen delivery during endotoxemia. Shock 5: 349–56

    Article  PubMed  CAS  Google Scholar 

  51. Vincent JL, Roman A, De Backer D, Kahn RJ (1990) Oxygen Uptake/Supply dependency: Effects of short-term dobutamine infusion. Am Rev Respir Dis 142: 2–8

    PubMed  CAS  Google Scholar 

  52. Fang X, Tang W, Sun S et al. (2006) Comparison of buccal microcirculation between septic and hemorrhagic shock. Crit Care Med 34: S447-S453

    Google Scholar 

  53. De Backer D, Creteur J, Dubois MJ, Sakr Y, Vincent JL (2004) Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J 147: 91–9

    Article  PubMed  Google Scholar 

  54. Den Uil CA, Lagrand WK, van der EM et al. (2010) Impaired microcirculation predicts poor outcome of patients with acute myocardial infarction complicated by cardiogenic shock. Eur Heart J 31: 3032–9

    Article  Google Scholar 

  55. Simonson SG, Welty-Wolf K, Huang YT et al. (1994) Altered mitochondrial redox responses in gram negative septic shock in primates. Circ Shock 43: 34–43

    PubMed  CAS  Google Scholar 

  56. Brealey D, Brand M, Hargreaves I et al. (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360: 219–23

    Article  PubMed  CAS  Google Scholar 

  57. Torres J, Darley-Usmar V, Wilson MT (1995) Inhibition of cytochrome c oxidase in turnover by nitric oxide: mechanism and implications for control of respiration. Biochem J 312: 169–73

    PubMed  CAS  Google Scholar 

  58. Radi R, Rodriguez M, Castro L, Telleri R (1994) Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 308: 89–95

    Article  PubMed  CAS  Google Scholar 

  59. Szabo A, Salzman AL, Szabo C (1998) Poly (ADP-ribose) synthetase activation mediates pulmonary microvascular and intestinal mucosal dysfunction in endotoxin shock. Life Sci 63: 2133–9

    Article  PubMed  CAS  Google Scholar 

  60. Crouser ED, Julian MW, Huff JE et al. (2004) Abnormal permeability of inner and outer mitochondrial membranes contributes independently to mitochondrial dysfunction in the liver during acute endotoxemia. Crit Care Med 32: 478–88

    Article  PubMed  CAS  Google Scholar 

  61. Gellerich FN, Trumbeckaite S, Hertel K et al. (1999) Impaired energy metabolism in hearts of septic baboons: diminished activities of Complex I and Complex II of the mitochondrial respiratory chain. Shock 11: 336–41

    Article  PubMed  CAS  Google Scholar 

  62. Ritter C, Andrades M, Frota Junior ML et al. (2003) Oxidative parameters and mortality in sepsis induced by cecal ligation and perforation. Intensive Care Med 29: 1782–9

    Article  PubMed  Google Scholar 

  63. Mebis L, Debaveye Y, Ellger B et al. (2009) Changes in the central component of the hypothalamus-pituitary-thyroid axis in a rabbit model of prolonged critical illness. Crit Care 13: R147

    Google Scholar 

  64. Larche J, Lancel S, Hassoun SM et al. (2006) Inhibition of mitochondrial permeability transition prevents sepsis-induced myocardial dysfunction and mortality. J Am Coll Cardiol 48: 377–85

    Article  PubMed  CAS  Google Scholar 

  65. Suliman HB, Welty-Wolf KE, Carraway M, Tatro L, Piantadosi CA (2004) Lipopolysaccharide induces oxidative cardiac mitochondrial damage and biogenesis. Cardiovasc Res 64: 279–88

    Article  PubMed  CAS  Google Scholar 

  66. Haden DW, Suliman HB, Carraway MS et al. (2007) Mitochondrial biogenesis restores oxidative metabolism during Staphylococcus aureus sepsis. Am J Respir Crit Care Med 176: 768–77

    Article  PubMed  CAS  Google Scholar 

  67. Lancel S, Hassoun SM, Favory R, Decoster B, Motterlini R, Neviere R (2009) Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis. J Pharmacol Exp Ther 329: 641–8

    Article  PubMed  CAS  Google Scholar 

  68. Ellis CG, Bateman RM, Sharpe MD, Sibbald WJ, Gill R (2002) Effect of a maldistribution of microvascular blood flow on capillary O(2) extraction in sepsis. Am J Physiol 282: H156–H164

    CAS  Google Scholar 

  69. Rivers EP, Kruse JA, Jacobsen G et al. (2007) The influence of early hemodynamic optimization strategies on biomarker patterns of severe sepsis and septic shock. Crit Care Med 35: 2016–24

    Article  PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag France

About this chapter

Cite this chapter

Favory, R., De Backer, D. (2011). Dysfonctions métaboliques et sepsis. In: Désordres métaboliques et réanimation. Le point sur .... Springer, Paris. https://doi.org/10.1007/978-2-287-99027-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-99027-4_26

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-99026-7

  • Online ISBN: 978-2-287-99027-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics